HIV-1 reverse transcriptase mutants resistant to nonnucleoside reverse transcriptase inhibitors do not adversely affect DNA synthesis: pre-steady-state and steady-state kinetic studies. 2006

Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA.

We have previously demonstrated that nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant mutants have different levels of replication fitness relative to wild type; those with greater reductions in fitness are less likely to develop during therapy in patients. We have also found that reductions in rates of RNase H cleavage by mutant RTs correlate with reductions in fitness and that NNRTI-resistant RTs catalyze polymerization with a processivity similar to wild type. In this study, we evaluated the polymerase function of 3 clinically occurring NNRTI-resistant RTs (K103N, P236L, and V106A) in greater detail, under both pre-steady-state and steady-state conditions. The overall pathway of single-nucleotide incorporation was unchanged for the mutant RTs compared with wild type. In addition, the NNRTI-resistant mutants were each similar to wild type in rate of nucleotide incorporation (kpol), affinity for dGTP (Kd), and steady-state rate of polymerization (kss and kcat), using either RNA or DNA templates. These findings suggest that the close proximity of the NNRTI-resistance mutations to the polymerase active site does not affect the interactions of the enzyme with the incoming nucleotide or the primer-template sufficiently to affect polymerization and support the hypothesis that these reductions in RNase H activity contribute to reductions in replication fitness.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D054303 HIV Reverse Transcriptase A reverse transcriptase encoded by the POL GENE of HIV. It is a heterodimer of 66 kDa and 51 kDa subunits that are derived from a common precursor protein. The heterodimer also includes an RNAse H activity (RIBONUCLEASE H, HUMAN IMMUNODEFICIENCY VIRUS) that plays an essential role the viral replication process. Reverse Transcriptase, HIV,Reverse Transcriptase, Human Immunodeficiency Virus,Transcriptase, HIV Reverse
D017931 DNA Primers Short sequences (generally about 10 base pairs) of DNA that are complementary to sequences of messenger RNA and allow reverse transcriptases to start copying the adjacent sequences of mRNA. Primers are used extensively in genetic and molecular biology techniques. DNA Primer,Oligodeoxyribonucleotide Primer,Oligodeoxyribonucleotide Primers,Oligonucleotide Primer,Oligonucleotide Primers,Primer, DNA,Primer, Oligodeoxyribonucleotide,Primer, Oligonucleotide,Primers, DNA,Primers, Oligodeoxyribonucleotide,Primers, Oligonucleotide
D018894 Reverse Transcriptase Inhibitors Inhibitors of reverse transcriptase (RNA-DIRECTED DNA POLYMERASE), an enzyme that synthesizes DNA on an RNA template. Reverse Transcriptase Inhibitor,Inhibitors, Reverse Transcriptase,Inhibitor, Reverse Transcriptase,Transcriptase Inhibitor, Reverse
D024882 Drug Resistance, Viral The ability of viruses to resist or to become tolerant to chemotherapeutic agents or antiviral agents. This resistance is acquired through gene mutation. Antiviral Drug Resistance,Antiviral Drug Resistances,Drug Resistances, Viral

Related Publications

Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
January 1996, Biochemistry,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
December 2004, Bioorganic & medicinal chemistry,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
February 2008, The Journal of biological chemistry,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
January 1996, Methods in enzymology,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
March 1993, The Journal of biological chemistry,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
June 2012, Bioorganic & medicinal chemistry letters,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
November 2006, PLoS pathogens,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
December 1991, Proceedings of the National Academy of Sciences of the United States of America,
Robert A Domaoal, and Robert A Bambara, and Lisa M Demeter
January 2006, Current pharmaceutical design,
Copied contents to your clipboard!