Aspartate-like immunoreactivity in primary afferent neurons. 1991

D J Tracey, and S De Biasi, and K Phend, and A Rustioni
Department of Cell Biology and Anatomy, University of North Carolina, Chapel Hill 27599-7090.

There is now good evidence that amino acids act as neurotransmitters in primary afferent neurons of dorsal root ganglia. Glutamate is the primary candidate for such a role, and there are reasons to believe that release of glutamate may be accompanied by the release of other neuroactive substances. Using immunocytochemical techniques, we have tested the hypothesis that some dorsal root ganglion neurons contain elevated levels of aspartate as well as glutamate. Antisera raised against conjugates of aspartate or glutamate were used for this purpose. Blocking experiments confirmed that these antibodies were specific to their antigens in cryostat sections of dorsal root ganglia. Aspartate immunoreactivity was found in approximately 30% of neurons in cervical dorsal root ganglia. The relation between cell size and staining intensity for aspartate was examined using quantitative video microscopy; the great majority of cells immunopositive for aspartate were small (15-30 microns in diameter); about 85% of these cells stained for aspartate, although staining intensities varied over a wide range. By reacting consecutive sections with anti-aspartate and anti-glutamate it was shown that elevated levels of aspartate were found in the same cells which contained elevated levels of glutamate. By measuring the staining intensity of individual cells for both aspartate and glutamate, it was also shown that there was a positive correlation between staining intensity and, presumably, concentration of the two amino acids. The presence of high levels of aspartate in terminals located in the superficial laminae of the dorsal horn was verified by pre- and post-embedding immunocytochemistry with the electron microscope. Aspartate was demonstrated in scalloped terminals, including dark scalloped terminals believed to be associated with unmyelinated fibers of nociceptors. This evidence supports the hypothesis that aspartate as well as glutamate is present in the cell bodies and terminals of nociceptive primary afferents, and may be released by the terminals of these afferents to activate neurons in the superficial laminae of the dorsal horn.

UI MeSH Term Description Entries
D009411 Nerve Endings Branch-like terminations of NERVE FIBERS, sensory or motor NEURONS. Endings of sensory neurons are the beginnings of afferent pathway to the CENTRAL NERVOUS SYSTEM. Endings of motor neurons are the terminals of axons at the muscle cells. Nerve endings which release neurotransmitters are called PRESYNAPTIC TERMINALS. Ending, Nerve,Endings, Nerve,Nerve Ending
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009619 Nociceptors Peripheral AFFERENT NEURONS which are sensitive to injuries or pain, usually caused by extreme thermal exposures, mechanical forces, or other noxious stimuli. Their cell bodies reside in the DORSAL ROOT GANGLIA. Their peripheral terminals (NERVE ENDINGS) innervate target tissues and transduce noxious stimuli via axons to the CENTRAL NERVOUS SYSTEM. Pain Receptors,Receptors, Pain,Nociceptive Neurons,Neuron, Nociceptive,Neurons, Nociceptive,Nociceptive Neuron,Nociceptor,Pain Receptor
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005727 Ganglia, Spinal Sensory ganglia located on the dorsal spinal roots within the vertebral column. The spinal ganglion cells are pseudounipolar. The single primary branch bifurcates sending a peripheral process to carry sensory information from the periphery and a central branch which relays that information to the spinal cord or brain. Dorsal Root Ganglia,Spinal Ganglia,Dorsal Root Ganglion,Ganglion, Spinal,Ganglia, Dorsal Root,Ganglion, Dorsal Root,Spinal Ganglion
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000344 Afferent Pathways Nerve structures through which impulses are conducted from a peripheral part toward a nerve center. Afferent Pathway,Pathway, Afferent,Pathways, Afferent
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001224 Aspartic Acid One of the non-essential amino acids commonly occurring in the L-form. It is found in animals and plants, especially in sugar cane and sugar beets. It may be a neurotransmitter. (+-)-Aspartic Acid,(R,S)-Aspartic Acid,Ammonium Aspartate,Aspartate,Aspartate Magnesium Hydrochloride,Aspartic Acid, Ammonium Salt,Aspartic Acid, Calcium Salt,Aspartic Acid, Dipotassium Salt,Aspartic Acid, Disodium Salt,Aspartic Acid, Hydrobromide,Aspartic Acid, Hydrochloride,Aspartic Acid, Magnesium (1:1) Salt, Hydrochloride, Trihydrate,Aspartic Acid, Magnesium (2:1) Salt,Aspartic Acid, Magnesium-Potassium (2:1:2) Salt,Aspartic Acid, Monopotassium Salt,Aspartic Acid, Monosodium Salt,Aspartic Acid, Potassium Salt,Aspartic Acid, Sodium Salt,Calcium Aspartate,Dipotassium Aspartate,Disodium Aspartate,L-Aspartate,L-Aspartic Acid,Magnesiocard,Magnesium Aspartate,Mg-5-Longoral,Monopotassium Aspartate,Monosodium Aspartate,Potassium Aspartate,Sodium Aspartate,Aspartate, Ammonium,Aspartate, Calcium,Aspartate, Dipotassium,Aspartate, Disodium,Aspartate, Magnesium,Aspartate, Monopotassium,Aspartate, Monosodium,Aspartate, Potassium,Aspartate, Sodium,L Aspartate,L Aspartic Acid
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus

Related Publications

D J Tracey, and S De Biasi, and K Phend, and A Rustioni
February 1986, Brain research,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
February 1991, Neuroscience letters,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
January 1989, Peptides,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
October 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
September 1981, Brain research,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
August 1999, Cell and tissue research,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
January 1998, Neuroimmunomodulation,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
May 1984, Neuroscience letters,
D J Tracey, and S De Biasi, and K Phend, and A Rustioni
September 1998, Brain research,
Copied contents to your clipboard!