Syntactic and semantic modulation of neural activity during auditory sentence comprehension. 2006

Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
Medical College of Wisconsin, WI 53226, USA. chumphri@mcw.edu

In previous functional neuroimaging studies, left anterior temporal and temporal-parietal areas responded more strongly to sentences than to randomly ordered lists of words. The smaller response for word lists could be explained by either (1) less activation of syntactic processes due to the absence of syntactic structure in the random word lists or (2) less activation of semantic processes resulting from failure to combine the content words into a global meaning. To test these two explanations, we conducted a functional magnetic resonance imaging study in which word order and combinatorial word meaning were independently manipulated during auditory comprehension. Subjects heard six different stimuli: normal sentences, semantically incongruent sentences in which content words were randomly replaced with other content words, pseudoword sentences, and versions of these three sentence types in which word order was randomized to remove syntactic structure. Effects of syntactic structure (greater activation to sentences than to word lists) were observed in the left anterior superior temporal sulcus and left angular gyrus. Semantic effects (greater activation to semantically congruent stimuli than either incongruent or pseudoword stimuli) were seen in widespread, bilateral temporal lobe areas and the angular gyrus. Of the two regions that responded to syntactic structure, the angular gyrus showed a greater response to semantic structure, suggesting that reduced activation for word lists in this area is related to a disruption in semantic processing. The anterior temporal lobe, on the other hand, was relatively insensitive to manipulations of semantic structure, suggesting that syntactic information plays a greater role in driving activation in this area.

UI MeSH Term Description Entries
D007091 Image Processing, Computer-Assisted A technique of inputting two-dimensional or three-dimensional images into a computer and then enhancing or analyzing the imagery into a form that is more useful to the human observer. Biomedical Image Processing,Computer-Assisted Image Processing,Digital Image Processing,Image Analysis, Computer-Assisted,Image Reconstruction,Medical Image Processing,Analysis, Computer-Assisted Image,Computer-Assisted Image Analysis,Computer Assisted Image Analysis,Computer Assisted Image Processing,Computer-Assisted Image Analyses,Image Analyses, Computer-Assisted,Image Analysis, Computer Assisted,Image Processing, Biomedical,Image Processing, Computer Assisted,Image Processing, Digital,Image Processing, Medical,Image Processings, Medical,Image Reconstructions,Medical Image Processings,Processing, Biomedical Image,Processing, Digital Image,Processing, Medical Image,Processings, Digital Image,Processings, Medical Image,Reconstruction, Image,Reconstructions, Image
D007839 Functional Laterality Behavioral manifestations of cerebral dominance in which there is preferential use and superior functioning of either the left or the right side, as in the preferred use of the right hand or right foot. Ambidexterity,Behavioral Laterality,Handedness,Laterality of Motor Control,Mirror Writing,Laterality, Behavioral,Laterality, Functional,Mirror Writings,Motor Control Laterality,Writing, Mirror,Writings, Mirror
D008279 Magnetic Resonance Imaging Non-invasive method of demonstrating internal anatomy based on the principle that atomic nuclei in a strong magnetic field absorb pulses of radiofrequency energy and emit them as radiowaves which can be reconstructed into computerized images. The concept includes proton spin tomographic techniques. Chemical Shift Imaging,MR Tomography,MRI Scans,MRI, Functional,Magnetic Resonance Image,Magnetic Resonance Imaging, Functional,Magnetization Transfer Contrast Imaging,NMR Imaging,NMR Tomography,Tomography, NMR,Tomography, Proton Spin,fMRI,Functional Magnetic Resonance Imaging,Imaging, Chemical Shift,Proton Spin Tomography,Spin Echo Imaging,Steady-State Free Precession MRI,Tomography, MR,Zeugmatography,Chemical Shift Imagings,Echo Imaging, Spin,Echo Imagings, Spin,Functional MRI,Functional MRIs,Image, Magnetic Resonance,Imaging, Magnetic Resonance,Imaging, NMR,Imaging, Spin Echo,Imagings, Chemical Shift,Imagings, Spin Echo,MRI Scan,MRIs, Functional,Magnetic Resonance Images,Resonance Image, Magnetic,Scan, MRI,Scans, MRI,Shift Imaging, Chemical,Shift Imagings, Chemical,Spin Echo Imagings,Steady State Free Precession MRI
D008297 Male Males
D008875 Middle Aged An adult aged 45 - 64 years. Middle Age
D011578 Psycholinguistics A discipline concerned with relations between messages and the characteristics of individuals who select and interpret them; it deals directly with the processes of encoding (phonetics) and decoding (psychoacoustics) as they relate states of messages to states of communicators. Psycholinguistic
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D001931 Brain Mapping Imaging techniques used to colocalize sites of brain functions or physiological activity with brain structures. Brain Electrical Activity Mapping,Functional Cerebral Localization,Topographic Brain Mapping,Brain Mapping, Topographic,Functional Cerebral Localizations,Mapping, Brain,Mapping, Topographic Brain
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
September 2013, Brain and language,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
February 2024, NeuroImage,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
October 1989, Brain and language,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
January 2004, Neuroreport,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
November 2015, Journal of cognitive neuroscience,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
November 2023, The Journal of general psychology,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
March 2002, Neuroreport,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
August 2010, Cerebral cortex (New York, N.Y. : 1991),
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
April 2001, Brain research. Cognitive brain research,
Colin Humphries, and Jeffrey R Binder, and David A Medler, and Einat Liebenthal
November 2020, Cerebral cortex (New York, N.Y. : 1991),
Copied contents to your clipboard!