Selective induction of intestinal CYP3A23 by 1alpha,25-dihydroxyvitamin D3 in rats. 2006

Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
Department of Pharmaceutics, University of Washington, Seattle, 98195-7610, USA.

Enhancement of CYP3A transcription in both the small intestine and liver of the mouse by activation of a VDR signaling pathway was shown recently by Makishima et al. (Science, 2002). However, in humans and rats, hepatic VDR content is much lower than that found in small intestine, suggesting the possibility of tissue-selective responses to 1,25(OH)(2)D(3). The purpose of this study was to determine the effect of 1,25(OH)(2)D(3) on intestinal and hepatic CYP3A expression in the rat. We found that an acute intraperitoneal treatment (every 48 h) in adult male rats with 1,25(OH)(2)D(3) induced CYP3A transcription selectively in small intestine, but not in liver. At a dose of 100 ng, there was a 6.6-fold increase in intestinal CYP3A23 mRNA after the third treatment (p < 0.05). There were concordant effects of 1,25(OH)(2)D(3) treatment on intestinal CYP3A23 protein levels; 2.2-fold (p < 0.05), 3.5-fold (p < 0.05) and 4.8-fold (p < 0.01) increase following 1-3 doses of 100 ng 1,25(OH)(2)D(3), respectively. In contrast, there was no significant change of CYP3A23 protein content in liver at the 1,25(OH)(2)D(3) doses tested. In support of these findings, there was a 366-fold and 77-fold higher level of VDR mRNA expression in the respective rat and human jejunal mucosa, compared to the liver. These data suggest that the human liver will be less sensitive than the intestine to the transcriptional effects of 1,25(OH)(2)D(3) and that this regulatory pathway may contribute to inter-individual variability in constitutive intestinal CYP3A4 expression.

UI MeSH Term Description Entries
D007413 Intestinal Mucosa Lining of the INTESTINES, consisting of an inner EPITHELIUM, a middle LAMINA PROPRIA, and an outer MUSCULARIS MUCOSAE. In the SMALL INTESTINE, the mucosa is characterized by a series of folds and abundance of absorptive cells (ENTEROCYTES) with MICROVILLI. Intestinal Epithelium,Intestinal Glands,Epithelium, Intestinal,Gland, Intestinal,Glands, Intestinal,Intestinal Gland,Mucosa, Intestinal
D007422 Intestines The section of the alimentary canal from the STOMACH to the ANAL CANAL. It includes the LARGE INTESTINE and SMALL INTESTINE. Intestine
D007583 Jejunum The middle portion of the SMALL INTESTINE, between DUODENUM and ILEUM. It represents about 2/5 of the remaining portion of the small intestine below duodenum. Jejunums
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008297 Male Males
D010089 Oxidoreductases, N-Demethylating N-Demethylase,N-Demethylases,Oxidoreductases, N Demethylating,Demethylating Oxidoreductases, N,N Demethylase,N Demethylases,N Demethylating Oxidoreductases,N-Demethylating Oxidoreductases
D002117 Calcitriol The physiologically active form of vitamin D. It is formed primarily in the kidney by enzymatic hydroxylation of 25-hydroxycholecalciferol (CALCIFEDIOL). Its production is stimulated by low blood calcium levels and parathyroid hormone. Calcitriol increases intestinal absorption of calcium and phosphorus, and in concert with parathyroid hormone increases bone resorption. 1 alpha,25-Dihydroxycholecalciferol,1 alpha,25-Dihydroxyvitamin D3,1, 25-(OH)2D3,1,25(OH)2D3,1,25-Dihydroxycholecalciferol,1,25-Dihydroxyvitamin D3,1 alpha, 25-dihydroxy-20-epi-Vitamin D3,1,25(OH)2-20epi-D3,1,25-dihydroxy-20-epi-Vitamin D3,20-epi-1alpha,25-dihydroxycholecaliferol,Bocatriol,Calcijex,Calcitriol KyraMed,Calcitriol-Nefro,Decostriol,MC-1288,MC1288,Osteotriol,Renatriol,Rocaltrol,Silkis,Sitriol,Soltriol,Tirocal,1 alpha,25 Dihydroxyvitamin D3,1,25 Dihydroxycholecalciferol,1,25 Dihydroxyvitamin D3,1,25 dihydroxy 20 epi Vitamin D3,Calcitriol Nefro,D3, 1 alpha,25-Dihydroxyvitamin,D3, 1,25-Dihydroxyvitamin,D3, 1,25-dihydroxy-20-epi-Vitamin,KyraMed, Calcitriol,MC 1288
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
January 1998, Life sciences,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
July 2002, Molecular cancer therapeutics,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
March 2008, Zhonghua gan zang bing za zhi = Zhonghua ganzangbing zazhi = Chinese journal of hepatology,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
June 1978, The Journal of biological chemistry,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
December 1976, Life sciences,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
April 1999, FEBS letters,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
February 2000, Biological & pharmaceutical bulletin,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
October 1998, Endocrinology,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
September 1975, Biochemical and biophysical research communications,
Yang Xu, and Kazunori Iwanaga, and Changcheng Zhou, and Matthew J Cheesman, and Federico Farin, and Kenneth E Thummel
April 1999, Biological & pharmaceutical bulletin,
Copied contents to your clipboard!