A comparison of intramolecular rearrangements promoted by transposons Tn5 and Tn10. 1991

A Ahmed
Department of Genetics, University of Alberta, Edmonton, Canada.

The bacterial transposon Tn10 has previously been shown to move to other genomic sites by a conservative mechanism, whereby the transposon is excised by double-strand breaks and inserted between a pair of staggered nicks at the target. Other transposons, like Tn3, have been shown to transpose by a replicative mechanism that involves symmetrical nicking of the element and formation of the 'Shapiro intermediate', which can mature into either a cointegrate or a simple insert. The situation with respect to Tn5 is unclear; it was originally reported to use a conservative mechanism, but other evidence suggests that the mechanism might be replicative. In this paper, rearrangements of adjacent DNA promoted by Tn10 and Tn5 have been compared using positive selection for galactose-resistance to detect such rearrangements. Tn10 promoted the formation of adjacent deletions (that started from an inside end of Tn10), deletion/inversions and simple IS10 insertions, but no cointegrates. This behaviour is fully consistent with a conservative mechanism. In contrast, Tn5 was found to promote formation of adjacent deletions (that started mainly from an outside end of Tn5), IS50 insertions (that were frequently accompanied by inversions of adjacent DNA) and cointegrates. These characteristics seem compatible with a replicative, rather than a conservative, mode of transposition. Clearly, Tn5 and Tn10 exhibit some significant differences in their transposition. These results, and results of some previous experiments, have been interpreted to mean that Tn5 could use a replicative mechanism for its transposition.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D010957 Plasmids Extrachromosomal, usually CIRCULAR DNA molecules that are self-replicating and transferable from one organism to another. They are found in a variety of bacterial, archaeal, fungal, algal, and plant species. They are used in GENETIC ENGINEERING as CLONING VECTORS. Episomes,Episome,Plasmid
D002872 Chromosome Deletion Actual loss of portion of a chromosome. Monosomy, Partial,Partial Monosomy,Deletion, Chromosome,Deletions, Chromosome,Monosomies, Partial,Partial Monosomies
D004251 DNA Transposable Elements Discrete segments of DNA which can excise and reintegrate to another site in the genome. Most are inactive, i.e., have not been found to exist outside the integrated state. DNA transposable elements include bacterial IS (insertion sequence) elements, Tn elements, the maize controlling elements Ac and Ds, Drosophila P, gypsy, and pogo elements, the human Tigger elements and the Tc and mariner elements which are found throughout the animal kingdom. DNA Insertion Elements,DNA Transposons,IS Elements,Insertion Sequence Elements,Tn Elements,Transposable Elements,Elements, Insertion Sequence,Sequence Elements, Insertion,DNA Insertion Element,DNA Transposable Element,DNA Transposon,Element, DNA Insertion,Element, DNA Transposable,Element, IS,Element, Insertion Sequence,Element, Tn,Element, Transposable,Elements, DNA Insertion,Elements, DNA Transposable,Elements, IS,Elements, Tn,Elements, Transposable,IS Element,Insertion Element, DNA,Insertion Elements, DNA,Insertion Sequence Element,Sequence Element, Insertion,Tn Element,Transposable Element,Transposable Element, DNA,Transposable Elements, DNA,Transposon, DNA,Transposons, DNA
D004261 DNA Replication The process by which a DNA molecule is duplicated. Autonomous Replication,Replication, Autonomous,Autonomous Replications,DNA Replications,Replication, DNA,Replications, Autonomous,Replications, DNA
D004269 DNA, Bacterial Deoxyribonucleic acid that makes up the genetic material of bacteria. Bacterial DNA
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015321 Gene Rearrangement The ordered rearrangement of gene regions by DNA recombination such as that which occurs normally during development. DNA Rearrangement,DNA Rearrangements,Gene Rearrangements,Rearrangement, DNA,Rearrangement, Gene,Rearrangements, DNA,Rearrangements, Gene
Copied contents to your clipboard!