Translesion synthesis across polycyclic aromatic hydrocarbon diol epoxide adducts of deoxyadenosine by Sulfolobus solfataricus DNA polymerase Dpo4. 2006

Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
Department of Biochemistry and Chemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, USA.

The mechanisms by which derivatives of polycyclic aromatic hydrocarbons (PAHs) cause mutations have been of considerable interest. Three different N(6)-adenyl PAH-diol epoxide oligonucleotide derivatives were studied with the archebacterial translesion DNA polymerase Sulfolobus solfataricus Dpo4. Steady-state kinetic analysis indicated insertion of all four dNTPs opposite each of the three N(6)-adenyl PAH adducts, with only slightly varying misincorporation efficiencies. Full-length extension of shorter primers paired with templates containing the N(6)-adenyl PAH derivatives proceeded to apparent completion at 45 degrees C in the presence of added dimethyl sulfoxide. Analysis of the products by high-performance liquid chromatography/collision-induced mass spectrometry indicated the presence of mixtures of products with each PAH adduct. These mixtures correspond to both error-free synthesis and mixtures of polymerization/realignment steps. With an unmodified template, only the expected A:T and G:C pairing was detected in the primer extension products under these conditions, with no frameshifts. These results demonstrate the complexity of polymerization opposite these bulky N(6)-adenyl PAH adducts, even with a single polymerase.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008401 Gas Chromatography-Mass Spectrometry A microanalytical technique combining mass spectrometry and gas chromatography for the qualitative as well as quantitative determinations of compounds. Chromatography, Gas-Liquid-Mass Spectrometry,Chromatography, Gas-Mass Spectrometry,GCMS,Spectrometry, Mass-Gas Chromatography,Spectrum Analysis, Mass-Gas Chromatography,Gas-Liquid Chromatography-Mass Spectrometry,Mass Spectrometry-Gas Chromatography,Chromatography, Gas Liquid Mass Spectrometry,Chromatography, Gas Mass Spectrometry,Chromatography, Mass Spectrometry-Gas,Chromatography-Mass Spectrometry, Gas,Chromatography-Mass Spectrometry, Gas-Liquid,Gas Chromatography Mass Spectrometry,Gas Liquid Chromatography Mass Spectrometry,Mass Spectrometry Gas Chromatography,Spectrometries, Mass-Gas Chromatography,Spectrometry, Gas Chromatography-Mass,Spectrometry, Gas-Liquid Chromatography-Mass,Spectrometry, Mass Gas Chromatography,Spectrometry-Gas Chromatography, Mass,Spectrum Analysis, Mass Gas Chromatography
D009841 Oligonucleotides Polymers made up of a few (2-20) nucleotides. In molecular genetics, they refer to a short sequence synthesized to match a region where a mutation is known to occur, and then used as a probe (OLIGONUCLEOTIDE PROBES). (Dorland, 28th ed) Oligonucleotide
D011084 Polycyclic Aromatic Hydrocarbons Aromatic hydrocarbons that contain extended fused-ring structures. Polycyclic Aromatic Hydrocarbon,Polycyclic Hydrocarbons, Aromatic,Polynuclear Aromatic Hydrocarbon,Polynuclear Aromatic Hydrocarbons,Aromatic Hydrocarbon, Polycyclic,Aromatic Hydrocarbon, Polynuclear,Aromatic Hydrocarbons, Polycyclic,Aromatic Hydrocarbons, Polynuclear,Aromatic Polycyclic Hydrocarbons,Hydrocarbon, Polycyclic Aromatic,Hydrocarbon, Polynuclear Aromatic,Hydrocarbons, Aromatic Polycyclic,Hydrocarbons, Polycyclic Aromatic,Hydrocarbons, Polynuclear Aromatic
D003839 Deoxyadenosines Adenosine molecules which can be substituted in any position, but are lacking one hydroxyl group in the ribose part of the molecule. Adenine Deoxyribonucleosides,Adenylyldeoxyribonucleosides,Deoxyadenosine Derivatives,Deoxyribonucleosides, Adenine,Derivatives, Deoxyadenosine
D003854 Deoxyribonucleotides A purine or pyrimidine base bonded to a DEOXYRIBOSE containing a bond to a phosphate group. Deoxyribonucleotide
D004259 DNA-Directed DNA Polymerase DNA-dependent DNA polymerases found in bacteria, animal and plant cells. During the replication process, these enzymes catalyze the addition of deoxyribonucleotide residues to the end of a DNA strand in the presence of DNA as template-primer. They also possess exonuclease activity and therefore function in DNA repair. DNA Polymerase,DNA Polymerases,DNA-Dependent DNA Polymerases,DNA Polymerase N3,DNA Dependent DNA Polymerases,DNA Directed DNA Polymerase,DNA Polymerase, DNA-Directed,DNA Polymerases, DNA-Dependent,Polymerase N3, DNA,Polymerase, DNA,Polymerase, DNA-Directed DNA,Polymerases, DNA,Polymerases, DNA-Dependent DNA
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D013696 Temperature The property of objects that determines the direction of heat flow when they are placed in direct thermal contact. The temperature is the energy of microscopic motions (vibrational and translational) of the particles of atoms. Temperatures
D015394 Molecular Structure The location of the atoms, groups or ions relative to one another in a molecule, as well as the number, type and location of covalent bonds. Structure, Molecular,Molecular Structures,Structures, Molecular

Related Publications

Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
February 2009, The Journal of biological chemistry,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
July 1988, The Journal of clinical investigation,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
July 2009, The Journal of biological chemistry,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
September 2001, Chemical research in toxicology,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
September 2010, Acta crystallographica. Section F, Structural biology and crystallization communications,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
December 2002, Nucleic acids research,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
May 1990, Carcinogenesis,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
October 2019, Archives of biochemistry and biophysics,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
September 2019, Mutagenesis,
Hong Zang, and Goutam Chowdhury, and Karen C Angel, and Thomas M Harris, and F Peter Guengerich
August 2011, Journal of the American Chemical Society,
Copied contents to your clipboard!