Reduction of trienoic fatty acid content by expression of a double-stranded RNA of a plastid omega-3 fatty acid desaturase gene in transgenic tobacco. 2006

Tatsuro Hamada, and Koh Iba, and Takiko Shimada
Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Nonoichimachi, Ishikawa 921-8836, Japan. hamada@ishikawa-pu.ac.jp

Plastid omega-3 fatty acid desaturase catalyzes the conversion of dienoic fatty acids (16:2 and 18:2) to trienoic fatty acids (16:3 and alpha-18:3) in glycerolipids which are the main constituents of chloroplast membranes. We produced transgenic tobacco plants that express the transcript of a double-stranded RNA (dsRNA) of tobacco plastid omega-3 fatty acid desaturase gene, NtFAD7. In these transgenic plants, 16:3 and alpha-18:3 content in leaves decreased to less than 2.7% and 7.5-10.4%, respectively, when compared with the control plant. The steady-state NtFAD7 mRNA was not detected in the transgenic plants. These results indicate that down-regulation of the transcript level in the NtFAD7 by introduction of NtFAD7 dsRNA constructs is useful to decrease the trienoic fatty acid contents of the vegetative tissues in higher plants.

UI MeSH Term Description Entries
D012330 RNA, Double-Stranded RNA consisting of two strands as opposed to the more prevalent single-stranded RNA. Most of the double-stranded segments are formed from transcription of DNA by intramolecular base-pairing of inverted complementary sequences separated by a single-stranded loop. Some double-stranded segments of RNA are normal in all organisms. Double-Stranded RNA,Double Stranded RNA,RNA, Double Stranded
D014026 Nicotiana A plant genus of the family SOLANACEAE. Members contain NICOTINE and other biologically active chemicals; the dried leaves of Nicotiana tabacum are used for SMOKING. Tobacco Plant,Nicotiana tabacum,Plant, Tobacco,Plants, Tobacco,Tobacco Plants
D015525 Fatty Acids, Omega-3 A group of unsaturated fatty acids occurring mainly in fish oils, with three double bonds at particular positions in the hydrocarbon chain. N-3 Fatty Acid,Omega-3 Fatty Acid,Omega-3 Fatty Acids,n-3 Fatty Acids,n-3 Oil,n3 Oil,Omega 3 Fatty Acids,n-3 Oils,n-3 PUFA,n-3 Polyunsaturated Fatty Acid,n3 Fatty Acid,n3 Oils,n3 PUFA,n3 Polyunsaturated Fatty Acid,Acid, N-3 Fatty,Acid, Omega-3 Fatty,Fatty Acid, N-3,Fatty Acid, Omega-3,Fatty Acid, n3,N 3 Fatty Acid,Oil, n-3,Oil, n3,Omega 3 Fatty Acid,PUFA, n-3,PUFA, n3,n 3 Fatty Acids,n 3 Oil,n 3 Oils,n 3 PUFA,n 3 Polyunsaturated Fatty Acid
D044943 Fatty Acid Desaturases A family of enzymes that catalyze the stereoselective, regioselective, or chemoselective syn-dehydrogenation reactions. They function by a mechanism that is linked directly to reduction of molecular OXYGEN. Acyl CoA Desaturase,Enoyl CoA Reductase,Fatty Acid Desaturase,Fatty Acid Desaturating Enzymes,Acyl CoA Desaturases,Enoyl CoA Reductases,Acid Desaturase, Fatty,CoA Desaturase, Acyl,CoA Reductase, Enoyl,Desaturase, Acyl CoA,Desaturase, Fatty Acid,Desaturases, Fatty Acid,Reductase, Enoyl CoA,Reductases, Enoyl CoA
D017962 alpha-Linolenic Acid A fatty acid that is found in plants and involved in the formation of prostaglandins. Linolenic Acid,Linolenate,alpha-Linolenic Acid, (E,E,E)-Isomer,alpha-Linolenic Acid, (E,E,Z)-Isomer,alpha-Linolenic Acid, (E,Z,E)-Isomer,alpha-Linolenic Acid, (E,Z,Z)-Isomer,alpha-Linolenic Acid, (Z,E,E)-Isomer,alpha-Linolenic Acid, (Z,E,Z)-Isomer,alpha-Linolenic Acid, (Z,Z,E)-Isomer,alpha-Linolenic Acid, Ammonium Salt,alpha-Linolenic Acid, Calcium Salt,alpha-Linolenic Acid, Lithium Salt,alpha-Linolenic Acid, Magnesium Salt,alpha-Linolenic Acid, Potassium Salt,alpha-Linolenic Acid, Sodium Salt,alpha-Linolenic Acid, Tin(2+) Salt,alpha-Linolenic Acid, Zinc Salt,alpha Linolenic Acid,alpha Linolenic Acid, Ammonium Salt,alpha Linolenic Acid, Calcium Salt,alpha Linolenic Acid, Lithium Salt,alpha Linolenic Acid, Magnesium Salt,alpha Linolenic Acid, Potassium Salt,alpha Linolenic Acid, Sodium Salt,alpha Linolenic Acid, Zinc Salt
D018087 Plastids Self-replicating cytoplasmic organelles of plant and algal cells that contain pigments and may synthesize and accumulate various substances. PLASTID GENOMES are used in phylogenetic studies. Amyloplasts,Chromoplasts,Leucoplasts,Leukoplasts,Amyloplast,Chromoplast,Leucoplast,Leukoplast,Plastid
D018506 Gene Expression Regulation, Plant Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control of gene action in plants. Plant Gene Expression Regulation,Regulation of Gene Expression, Plant,Regulation, Gene Expression, Plant
D030821 Plants, Genetically Modified PLANTS, or their progeny, whose GENOME has been altered by GENETIC ENGINEERING. Genetically Modified Plants,Plants, Transgenic,Transgenic Plants,GMO Plants,Genetically Engineered Plants,Engineered Plant, Genetically,Engineered Plants, Genetically,GMO Plant,Genetically Engineered Plant,Genetically Modified Plant,Modified Plant, Genetically,Modified Plants, Genetically,Plant, GMO,Plant, Genetically Engineered,Plant, Genetically Modified,Plant, Transgenic,Plants, GMO,Plants, Genetically Engineered,Transgenic Plant
D034622 RNA Interference A gene silencing phenomenon whereby specific dsRNAs (RNA, DOUBLE-STRANDED) trigger the degradation of homologous mRNA (RNA, MESSENGER). The specific dsRNAs are processed into SMALL INTERFERING RNA (siRNA) which serves as a guide for cleavage of the homologous mRNA in the RNA-INDUCED SILENCING COMPLEX. DNA METHYLATION may also be triggered during this process. Gene Silencing, Post-Transcriptional,Post-Transcriptional Gene Silencing,Co-Suppression,Cosuppression,Posttranscriptional Gene Silencing,RNA Silencing,RNAi,Co Suppression,Gene Silencing, Post Transcriptional,Gene Silencing, Posttranscriptional,Gene Silencings, Posttranscriptional,Interference, RNA,Post Transcriptional Gene Silencing,Post-Transcriptional Gene Silencings,Silencing, Post-Transcriptional Gene

Related Publications

Tatsuro Hamada, and Koh Iba, and Takiko Shimada
June 2000, Plant science : an international journal of experimental plant biology,
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
March 2003, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
January 2003, World review of nutrition and dietetics,
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
June 1992, Bio/technology (Nature Publishing Company),
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
February 1997, Proceedings of the National Academy of Sciences of the United States of America,
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
June 1994, Plant physiology,
Tatsuro Hamada, and Koh Iba, and Takiko Shimada
January 2006, Sheng wu gong cheng xue bao = Chinese journal of biotechnology,
Copied contents to your clipboard!