Endothelin-A and -B receptors, superoxide, and Ca2+ signaling in afferent arterioles. 2007

Susan K Fellner, and William Arendshorst
Dept. of Cell and Molecular Physiology, Univ. of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7545, USA. sfellner@med.unc.edu

It is unknown if endothelin-A and -B receptors (ET(A)R and ET(B)R) activate the production of superoxide via NAD(P)H oxidase and subsequently stimulate the formation of cyclic adenine diphosphate ribose (cADPR) in afferent arterioles. Vessels were isolated from rat kidney and loaded with fura 2. Endothelin-1 (ET-1) rapidly increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) by 303 nM. The superoxide dismutase mimetic tempol, the NAD(P)H oxidase inhibitor apocynin, and nicotinamide, an inhibitor of ADPR cyclase, diminished the response by approximately 60%. The ET(B)R agonist sarafotoxin 6c (S6c) increased peak [Ca(2+)](i) by 117 nM. Subsequent addition of ET-1 in the continued presence of S6c caused an additional [Ca(2+)](i) peak of 225 nM. Neither nicotinamide or 8-bromo- (8-Br) cADPR nor apocynin decreased the [Ca(2+)](i) response to S6c, but inhibited the subsequent [Ca(2+)](i) response to ET-1. The ET(B)R blockers BQ-788 and A-192621 prevented the S6c [Ca(2+)](i) peak and reduced the ET-1 response by more than one-half, suggesting an ET(B)R/ET(A)R interaction. In contrast, the ET(A)R blocker BQ-123 had no effect on the S6c [Ca(2+)](i) peak and obliterated the subsequent ET-1 response. ET-1 immediately stimulated superoxide formation (measured with TEMPO-9-AC, 68 arbitrary units) that was inhibited 95% by apocynin or diphenyl iodonium. S6c or IRL-1620 increased superoxide by 8% of that caused by subsequent ET-1 addition. We conclude that ET(A)R activation of afferent arterioles increases the formation of superoxide that accounts for approximately 60% of subsequent Ca(2+) signaling. ET(B)R activation appears to result in only minor increases in superoxide production. Nicotinamide and 8-Br-cADPR results suggest that ET-1 (and primarily ET(A)R) causes the activation of vascular smooth muscle cell-ADPR cyclase.

UI MeSH Term Description Entries
D007668 Kidney Body organ that filters blood for the secretion of URINE and that regulates ion concentrations. Kidneys
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D009536 Niacinamide An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Nicotinamide,Vitamin B 3,Vitamin PP,3-Pyridinecarboxamide,Enduramide,Nicobion,Nicotinsäureamid Jenapharm,Papulex,Vitamin B3,3 Pyridinecarboxamide,B 3, Vitamin,B3, Vitamin,Jenapharm, Nicotinsäureamid
D009842 Oligopeptides Peptides composed of between two and twelve amino acids. Oligopeptide
D009861 Onium Compounds Ions with the suffix -onium, indicating cations with coordination number 4 of the type RxA+ which are analogous to QUATERNARY AMMONIUM COMPOUNDS (H4N+). Ions include phosphonium R4P+, oxonium R3O+, sulfonium R3S+, chloronium R2Cl+ Compounds, Onium
D010446 Peptide Fragments Partial proteins formed by partial hydrolysis of complete proteins or generated through PROTEIN ENGINEERING techniques. Peptide Fragment,Fragment, Peptide,Fragments, Peptide
D010880 Piperidines A family of hexahydropyridines.
D011759 Pyrrolidines Compounds also known as tetrahydropyridines with general molecular formula (CH2)4NH. Tetrahydropyridine,Tetrahydropyridines
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D001920 Bradykinin A nonapeptide messenger that is enzymatically produced from KALLIDIN in the blood where it is a potent but short-lived agent of arteriolar dilation and increased capillary permeability. Bradykinin is also released from MAST CELLS during asthma attacks, from gut walls as a gastrointestinal vasodilator, from damaged tissues as a pain signal, and may be a neurotransmitter. Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg,Bradykinin Acetate, (9-D-Arg)-Isomer,Bradykinin Diacetate,Bradykinin Hydrochloride,Bradykinin Triacetate,Bradykinin, (1-D-Arg)-Isomer,Bradykinin, (2-D-Pro)-Isomer,Bradykinin, (2-D-Pro-3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (2-D-Pro-7-D-Pro)-Isomer,Bradykinin, (3-D-Pro)-Isomer,Bradykinin, (3-D-Pro-7-D-Pro)-Isomer,Bradykinin, (5-D-Phe)-Isomer,Bradykinin, (5-D-Phe-8-D-Phe)-Isomer,Bradykinin, (6-D-Ser)-Isomer,Bradykinin, (7-D-Pro)-Isomer,Bradykinin, (8-D-Phe)-Isomer,Bradykinin, (9-D-Arg)-Isomer,Arg Pro Pro Gly Phe Ser Pro Phe Arg

Related Publications

Susan K Fellner, and William Arendshorst
March 2011, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association,
Susan K Fellner, and William Arendshorst
August 2009, American journal of physiology. Renal physiology,
Susan K Fellner, and William Arendshorst
January 1996, The American journal of physiology,
Susan K Fellner, and William Arendshorst
October 2011, Hypertension (Dallas, Tex. : 1979),
Susan K Fellner, and William Arendshorst
June 1991, Hypertension (Dallas, Tex. : 1979),
Susan K Fellner, and William Arendshorst
February 1998, Pflugers Archiv : European journal of physiology,
Susan K Fellner, and William Arendshorst
September 2005, Hypertension (Dallas, Tex. : 1979),
Susan K Fellner, and William Arendshorst
September 2004, The Journal of experimental biology,
Susan K Fellner, and William Arendshorst
April 2007, American journal of physiology. Renal physiology,
Copied contents to your clipboard!