Both Na+ and Cl- gradients energize NaCl/L-glutamate cotransport in lobster hepatopancreatic brush border membrane vesicles. 1991

L M Balon, and G A Ahearn
Department of Zoology, University of Hawaii at Manoa, Honolulu 96822.

Previous work with L-[3H]glutamate transport by lobster (Homarus americanus) hepatopancreatic brush border membrane vesicles (BBMV) indicated that the transport of this amino acid was stimulated by the presence of both Na+ and Cl- ions in the external medium, however, the specific catalytic or energetic role of each monovalent ion in amino acid transfer was not established (Ahearn and Clay (1987) J. Exp. Biol. 130, 175-191). The present study employs a variety of experimental treatments with this membrane preparation to clarify the nature of the ion dependency in the cotransport process. A zero-trans time course experiment using inwardly-directed transmembrane Na+ or Cl- gradients led to similar transient accumulations of the amino acid above equilibrium values in the presence of equilibrated concentrations of the respective counterions. The uptake overshoots observed in the presence of single ion gradients were significantly increased when gradients of both Na+ and Cl- were used simultaneously. When vesicles were pre-equilibrated with L-[3H]glutamate and either of the monovalent ions, an inwardly-directed gradient of each counterion led to the transient accumulation of additional labelled amino acid above its equilibrium concentration, indicating that either ion gradient was capable of energizing the net flow of L-glutamate. A cotransport stoichiometry of 1 Na+/1 Cl-/1 L-glutamate was established using the Static Head analysis where a balance of ion and amino acid driving forces were attained with a 7:1 Na+ or Cl- gradient (o greater than i) against a 7:1 L-glutamate gradient (i greater than o).

UI MeSH Term Description Entries
D008099 Liver A large lobed glandular organ in the abdomen of vertebrates that is responsible for detoxification, metabolism, synthesis and storage of various substances. Livers
D008121 Nephropidae Family of large marine CRUSTACEA, in the order DECAPODA. These are called clawed lobsters because they bear pincers on the first three pairs of legs. The American lobster and Cape lobster in the genus Homarus are commonly used for food. Clawed Lobsters,Homaridae,Homarus,Lobsters, Clawed,Clawed Lobster,Lobster, Clawed
D008871 Microvilli Minute projections of cell membranes which greatly increase the surface area of the cell. Brush Border,Striated Border,Border, Brush,Border, Striated,Borders, Brush,Borders, Striated,Brush Borders,Microvillus,Striated Borders
D010179 Pancreas A nodular organ in the ABDOMEN that contains a mixture of ENDOCRINE GLANDS and EXOCRINE GLANDS. The small endocrine portion consists of the ISLETS OF LANGERHANS secreting a number of hormones into the blood stream. The large exocrine portion (EXOCRINE PANCREAS) is a compound acinar gland that secretes several digestive enzymes into the pancreatic ductal system that empties into the DUODENUM.
D002352 Carrier Proteins Proteins that bind or transport specific substances in the blood, within the cell, or across cell membranes. Binding Proteins,Carrier Protein,Transport Protein,Transport Proteins,Binding Protein,Protein, Carrier,Proteins, Carrier
D002712 Chlorides Inorganic compounds derived from hydrochloric acid that contain the Cl- ion. Chloride,Chloride Ion Level,Ion Level, Chloride,Level, Chloride Ion
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001692 Biological Transport The movement of materials (including biochemical substances and drugs) through a biological system at the cellular level. The transport can be across cell membranes and epithelial layers. It also can occur within intracellular compartments and extracellular compartments. Transport, Biological,Biologic Transport,Transport, Biologic
D012964 Sodium A member of the alkali group of metals. It has the atomic symbol Na, atomic number 11, and atomic weight 23. Sodium Ion Level,Sodium-23,Ion Level, Sodium,Level, Sodium Ion,Sodium 23

Related Publications

L M Balon, and G A Ahearn
February 1985, The American journal of physiology,
L M Balon, and G A Ahearn
January 1996, The Journal of experimental biology,
L M Balon, and G A Ahearn
February 1992, The American journal of physiology,
L M Balon, and G A Ahearn
February 2004, The Journal of experimental biology,
L M Balon, and G A Ahearn
April 1987, Pflugers Archiv : European journal of physiology,
L M Balon, and G A Ahearn
September 1992, The Journal of biological chemistry,
L M Balon, and G A Ahearn
November 1992, The Journal of biological chemistry,
L M Balon, and G A Ahearn
January 1996, The Journal of experimental biology,
Copied contents to your clipboard!