Positron emission tomography. 2006

Gerd Muehllehner, and Joel S Karp
Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.

The developments in positron emission tomography (PET) are reviewed with an emphasis on instrumentation for clinical PET imaging. After a brief summary of positron imaging before the advent of computed tomography, various improvements are highlighted including the move from PET scanners with septa to fully 3D scanners, changes in the preferred scintillators, efforts to improve the energy discrimination, and improvements in attenuation correction. Time-of-flight PET imaging is given special attention due to the recent revival of this technique, which promises significant improvement. Besides technical instrumentation efforts, other factors which influenced the acceptance of clinical PET are also discussed.

UI MeSH Term Description Entries
D007089 Image Enhancement Improvement of the quality of a picture by various techniques, including computer processing, digital filtering, echocardiographic techniques, light and ultrastructural MICROSCOPY, fluorescence spectrometry and microscopy, scintigraphy, and in vitro image processing at the molecular level. Image Quality Enhancement,Enhancement, Image,Enhancement, Image Quality,Enhancements, Image,Enhancements, Image Quality,Image Enhancements,Image Quality Enhancements,Quality Enhancement, Image,Quality Enhancements, Image
D007090 Image Interpretation, Computer-Assisted Methods developed to aid in the interpretation of ultrasound, radiographic images, etc., for diagnosis of disease. Image Interpretation, Computer Assisted,Computer-Assisted Image Interpretation,Computer-Assisted Image Interpretations,Image Interpretations, Computer-Assisted,Interpretation, Computer-Assisted Image,Interpretations, Computer-Assisted Image
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001709 Biotechnology Body of knowledge related to the use of organisms, cells or cell-derived constituents for the purpose of developing products which are technically, scientifically and clinically useful. Alteration of biologic function at the molecular level (i.e., GENETIC ENGINEERING) is a central focus; laboratory methods used include TRANSFECTION and CLONING technologies, sequence and structure analysis algorithms, computer databases, and gene and protein structure function analysis and prediction. Biotechnologies
D049268 Positron-Emission Tomography An imaging technique using compounds labelled with short-lived positron-emitting radionuclides (such as carbon-11, nitrogen-13, oxygen-15 and fluorine-18) to measure cell metabolism. It has been useful in study of soft tissues such as CANCER; CARDIOVASCULAR SYSTEM; and brain. SINGLE-PHOTON EMISSION-COMPUTED TOMOGRAPHY is closely related to positron emission tomography, but uses isotopes with longer half-lives and resolution is lower. PET Imaging,PET Scan,Positron-Emission Tomography Imaging,Tomography, Positron-Emission,Imaging, PET,Imaging, Positron-Emission Tomography,PET Imagings,PET Scans,Positron Emission Tomography,Positron Emission Tomography Imaging,Positron-Emission Tomography Imagings,Scan, PET,Tomography Imaging, Positron-Emission,Tomography, Positron Emission
D021621 Imaging, Three-Dimensional The process of generating three-dimensional images by electronic, photographic, or other methods. For example, three-dimensional images can be generated by assembling multiple tomographic images with the aid of a computer, while photographic 3-D images (HOLOGRAPHY) can be made by exposing film to the interference pattern created when two laser light sources shine on an object. Computer-Assisted Three-Dimensional Imaging,Imaging, Three-Dimensional, Computer Assisted,3-D Image,3-D Imaging,Computer-Generated 3D Imaging,Three-Dimensional Image,Three-Dimensional Imaging, Computer Generated,3 D Image,3 D Imaging,3-D Images,3-D Imagings,3D Imaging, Computer-Generated,3D Imagings, Computer-Generated,Computer Assisted Three Dimensional Imaging,Computer Generated 3D Imaging,Computer-Assisted Three-Dimensional Imagings,Computer-Generated 3D Imagings,Image, 3-D,Image, Three-Dimensional,Images, 3-D,Images, Three-Dimensional,Imaging, 3-D,Imaging, Computer-Assisted Three-Dimensional,Imaging, Computer-Generated 3D,Imaging, Three Dimensional,Imagings, 3-D,Imagings, Computer-Assisted Three-Dimensional,Imagings, Computer-Generated 3D,Imagings, Three-Dimensional,Three Dimensional Image,Three Dimensional Imaging, Computer Generated,Three-Dimensional Images,Three-Dimensional Imaging,Three-Dimensional Imaging, Computer-Assisted,Three-Dimensional Imagings,Three-Dimensional Imagings, Computer-Assisted

Related Publications

Gerd Muehllehner, and Joel S Karp
November 2007, Seminars in nuclear medicine,
Gerd Muehllehner, and Joel S Karp
May 1997, Medizinische Monatsschrift fur Pharmazeuten,
Gerd Muehllehner, and Joel S Karp
April 1990, Archives of internal medicine,
Gerd Muehllehner, and Joel S Karp
July 2012, Ophthalmology,
Gerd Muehllehner, and Joel S Karp
August 2011, Nihon rinsho. Japanese journal of clinical medicine,
Gerd Muehllehner, and Joel S Karp
January 2000, Zeitschrift fur Kardiologie,
Gerd Muehllehner, and Joel S Karp
January 2001, Radiologic technology,
Gerd Muehllehner, and Joel S Karp
September 1995, Academic radiology,
Gerd Muehllehner, and Joel S Karp
January 1984, Neurosurgical review,
Copied contents to your clipboard!