Amphetamine-induced and spontaneous release of dopamine from A9 and A10 cell dendrites: an in vitro electrophysiological study in the mouse. 1991

G L Bernardini, and X Gu, and E Viscardi, and D C German
Department of Physiology, University of Texas Southwestern Medical Center, Dallas.

d-Amphetamine (d-AMP) is a potent releaser of dopamine (DA), and its central nervous system stimulant action is mediated primarily through its effect on the substantia nigra and ventral tegmental area dopaminergic neurons (nuclei A9 and A10, respectively). The purpose of the present experiment was to use electrophysiological techniques to examine dendritic release of DA in the in vitro slice preparation, and determine whether: (1) d-AMP inhibits the firing rates of both A9 and A10 cells; (2) the d-AMP-induced inhibition is mediated via the dendritic release of DA; and (3) there is spontaneous dendritic release of DA. Superfusion with d-AMP (2-100 microM) produced identical inhibitory dose-response curves for A9 and A10 cells, and a dose of 6.25 microM caused more than 50% inhibition in the cell firing rates. The d-AMP-induced inhibition was attenuated by blocking DA synthesis. Either D2 receptor blockade (sulpiride, 1 microM), or DA synthesis inhibition (alpha-methylparatyrosine, 50 microM) resulted in a marked increase in the firing rates of dopaminergic cells. These data suggest that d-AMP comparably releases DA from both A9 and A10 cell dendrites, that it releases newly-synthesized DA to inhibit cell firing, and that DA is tonically released to regulate cell firing rates via interactions with inhibitory D2 autoreceptors.

UI MeSH Term Description Entries
D008297 Male Males
D008781 Methyltyrosines A group of compounds that are methyl derivatives of the amino acid TYROSINE.
D008807 Mice, Inbred BALB C An inbred strain of mouse that is widely used in IMMUNOLOGY studies and cancer research. BALB C Mice, Inbred,BALB C Mouse, Inbred,Inbred BALB C Mice,Inbred BALB C Mouse,Mice, BALB C,Mouse, BALB C,Mouse, Inbred BALB C,BALB C Mice,BALB C Mouse
D008808 Mice, Inbred CBA An inbred strain of mouse that is widely used in BIOMEDICAL RESEARCH. Mice, CBA,Mouse, CBA,Mouse, Inbred CBA,CBA Mice,CBA Mice, Inbred,CBA Mouse,CBA Mouse, Inbred,Inbred CBA Mice,Inbred CBA Mouse
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D011954 Receptors, Dopamine Cell-surface proteins that bind dopamine with high affinity and trigger intracellular changes influencing the behavior of cells. Dopamine Receptors,Dopamine Receptor,Receptor, Dopamine
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D003913 Dextroamphetamine The d-form of AMPHETAMINE. It is a central nervous system stimulant and a sympathomimetic. It has also been used in the treatment of narcolepsy and of attention deficit disorders and hyperactivity in children. Dextroamphetamine has multiple mechanisms of action including blocking uptake of adrenergics and dopamine, stimulating release of monamines, and inhibiting monoamine oxidase. It is also a drug of abuse and a psychotomimetic. d-Amphetamine,Curban,Dexamfetamine,Dexamphetamine,Dexedrine,Dextro-Amphetamine Sulfate,DextroStat,Dextroamphetamine Sulfate,Oxydess,d-Amphetamine Sulfate,dextro-Amphetamine,Dextro Amphetamine Sulfate,Sulfate, Dextroamphetamine,d Amphetamine,d Amphetamine Sulfate,dextro Amphetamine
D004298 Dopamine One of the catecholamine NEUROTRANSMITTERS in the brain. It is derived from TYROSINE and is the precursor to NOREPINEPHRINE and EPINEPHRINE. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (RECEPTORS, DOPAMINE) mediate its action. Hydroxytyramine,3,4-Dihydroxyphenethylamine,4-(2-Aminoethyl)-1,2-benzenediol,Dopamine Hydrochloride,Intropin,3,4 Dihydroxyphenethylamine,Hydrochloride, Dopamine
D004594 Electrophysiology The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms.

Related Publications

G L Bernardini, and X Gu, and E Viscardi, and D C German
August 1991, Brain research,
G L Bernardini, and X Gu, and E Viscardi, and D C German
November 1976, Life sciences,
G L Bernardini, and X Gu, and E Viscardi, and D C German
February 1996, Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology,
G L Bernardini, and X Gu, and E Viscardi, and D C German
October 1993, The Journal of pharmacology and experimental therapeutics,
G L Bernardini, and X Gu, and E Viscardi, and D C German
September 1984, Brain research,
G L Bernardini, and X Gu, and E Viscardi, and D C German
July 2007, Neuroscience,
G L Bernardini, and X Gu, and E Viscardi, and D C German
January 1988, Experimental brain research,
G L Bernardini, and X Gu, and E Viscardi, and D C German
February 1988, Journal of neurochemistry,
G L Bernardini, and X Gu, and E Viscardi, and D C German
September 2005, European journal of pharmacology,
Copied contents to your clipboard!