T-type Ca2+ channels in vascular smooth muscle: multiple functions. 2006

Leanne L Cribbs
Department of Medicine, Cardiovascular Institute, Loyola University Medical Center, 2160 S. 1st Avenue, Maywood, IL 60153, USA. lcribbs@lumc.edu

Vascular smooth muscle is a major constituent of the blood vessel wall, and its many functions depend on type and location of the vessel, developmental or pathological state, and environmental and chemical factors. Vascular smooth muscle cells (VSMCs) use calcium as a signal molecule for multiple functions. An important component of calcium signaling pathways is the entry of extracellular calcium via voltage-gated Ca2+ channels, which in vascular smooth muscle cells (VSMCs) are of two main types, the high voltage-activated (HVA) L-type and low voltage-activated (LVA) T-type channels. Whereas L-type channels function primarily to regulate Ca2+ entry for contraction, it is generally accepted that T-type Ca2+ channels do not contribute significantly to arterial vasoconstriction, with the possible exception of the renal microcirculation. T-type Ca2+ channels are also present in some veins that display spontaneous contractile activity, where they likely generate pacemaker activity. T-type Ca2+ channel expression has also been associated with normal and pathological proliferation of VSMCs, often stimulated by external cues in response to insult or injury. Expression of T-type channels has been linked to the G1 and S phases of the cell cycle, a period important for the signaling of gene expression necessary for cell growth, progression of the cell cycle and ultimately cell division. To better understand T-type Ca2+ channel functions in VSM, it will be necessary to develop new approaches that are specifically targeted to this class of Ca2+ channels and its individual members.

UI MeSH Term Description Entries
D009119 Muscle Contraction A process leading to shortening and/or development of tension in muscle tissue. Muscle contraction occurs by a sliding filament mechanism whereby actin filaments slide inward among the myosin filaments. Inotropism,Muscular Contraction,Contraction, Muscle,Contraction, Muscular,Contractions, Muscle,Contractions, Muscular,Inotropisms,Muscle Contractions,Muscular Contractions
D009131 Muscle, Smooth, Vascular The nonstriated involuntary muscle tissue of blood vessels. Vascular Smooth Muscle,Muscle, Vascular Smooth,Muscles, Vascular Smooth,Smooth Muscle, Vascular,Smooth Muscles, Vascular,Vascular Smooth Muscles
D012079 Renal Circulation The circulation of the BLOOD through the vessels of the KIDNEY. Kidney Circulation,Renal Blood Flow,Circulation, Kidney,Circulation, Renal,Blood Flow, Renal,Flow, Renal Blood
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014661 Vasoconstriction The physiological narrowing of BLOOD VESSELS by contraction of the VASCULAR SMOOTH MUSCLE. Vasoconstrictions
D049109 Cell Proliferation All of the processes involved in increasing CELL NUMBER including CELL DIVISION. Cell Growth in Number,Cellular Proliferation,Cell Multiplication,Cell Number Growth,Growth, Cell Number,Multiplication, Cell,Number Growth, Cell,Proliferation, Cell,Proliferation, Cellular
D020747 Calcium Channels, T-Type A heterogenous group of transient or low voltage activated type CALCIUM CHANNELS. They are found in cardiac myocyte membranes, the sinoatrial node, Purkinje cells of the heart and the central nervous system. Transient-Type Calcium Channels,Calcium Channel (T-Type),T-Type Calcium Channel,T-Type Calcium Channels,T-Type VDCC,T-Type Voltage-Dependent Calcium Channels,Calcium Channel, T-Type,Calcium Channels, T Type,Calcium Channels, Transient-Type,Channel, T-Type Calcium,Channels, T-Type Calcium,Channels, Transient-Type Calcium,T Type Calcium Channel,T Type Calcium Channels,T Type VDCC,T Type Voltage Dependent Calcium Channels,Transient Type Calcium Channels,VDCC, T-Type

Related Publications

Leanne L Cribbs
August 2006, Cell calcium,
Leanne L Cribbs
December 1997, The Journal of biological chemistry,
Leanne L Cribbs
October 1995, Biochemical and biophysical research communications,
Leanne L Cribbs
March 1991, Pflugers Archiv : European journal of physiology,
Leanne L Cribbs
December 2006, American journal of physiology. Heart and circulatory physiology,
Copied contents to your clipboard!