Fatty acid-induced effect on glucagon secretion is mediated via fatty acid oxidation. 2007

Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
Department of Endocrinology and Metabolism, Aarhus Sygehus THG, Aarhus University Hospital, Tage-Hansens Gade 2, 8000 Aarhus C, Denmark.

BACKGROUND While the effect of fatty acids and ectopic triglyceride storage in pancreatic beta cells has been well-defined, only limited information is available on alpha cells. This study evaluates the long-term impact of fatty acids on alpha cell function and proliferation as well as fatty acid oxidation. METHODS Clonal alpha cells were cultured with fatty acids in the presence of high glucose for up to 3 days. The influence of fatty acids on glucagon secretion, glucagon content and triglyceride accumulation from 24 to 72 h was investigated. After a - 72 h culture, cell proliferation, carnitine palmitoyl transferase-1 mRNA level and the effect of etomoxir were also elucidated. RESULTS Fatty acids stimulated glucagon secretion and increased triglyceride accumulation in a time- and dose-dependent manner, but inhibited alpha cell proliferation. Lower concentrations (0.125-0.25 mM) of fatty acids significantly increased glucagon secretion at 48 and 72 h, but did not affect triglyceride content. However, a marked increment in triglyceride accumulation occurred in the presence of 0.5 mM fatty acids. Fatty acids caused an up-regulation of the expression of carnitine palmitoyl transferase-1 gene. Etomoxir (1 microM) reversed fatty acid-induced glucagon hypersecretion, but did not inhibit carnitine palmitoyl transferase-1 mRNA level. CONCLUSIONS Our data indicates that compared with triglyceride accumulation, glucagon secretion is more sensitive to changes in fatty acid concentration. The effect of fatty acids on the glucagon response is mediated through their oxidation. The high carnitine palmitoyl transferase-1 gene expression and the accumulation of triglyceride may initially be a compensatory oxidation reaction to elevated fatty acids.

UI MeSH Term Description Entries
D010084 Oxidation-Reduction A chemical reaction in which an electron is transferred from one molecule to another. The electron-donating molecule is the reducing agent or reductant; the electron-accepting molecule is the oxidizing agent or oxidant. Reducing and oxidizing agents function as conjugate reductant-oxidant pairs or redox pairs (Lehninger, Principles of Biochemistry, 1982, p471). Redox,Oxidation Reduction
D002334 Carnitine O-Palmitoyltransferase An enzyme that catalyzes reversibly the conversion of palmitoyl-CoA to palmitoylcarnitine in the inner mitochondrial membrane. EC 2.3.1.21. Carnitine Palmitoyltransferase,CPT II,Carnitine Acyltransferase I,Carnitine Palmitoyltransferase I,Carnitine Palmitoyltransferase II,Palmitoylcarnitine Transferase,Palmitylcarnitine Acyltransferase,Acyltransferase I, Carnitine,Acyltransferase, Palmitylcarnitine,Carnitine O Palmitoyltransferase,II, Carnitine Palmitoyltransferase,O-Palmitoyltransferase, Carnitine,Palmitoyltransferase I, Carnitine,Palmitoyltransferase II, Carnitine,Palmitoyltransferase, Carnitine,Transferase, Palmitoylcarnitine
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D004852 Epoxy Compounds Organic compounds that include a cyclic ether with three ring atoms in their structure. They are commonly used as precursors for POLYMERS such as EPOXY RESINS. Epoxide,Epoxides,Epoxy Compound,Oxiranes,Compound, Epoxy,Compounds, Epoxy
D005227 Fatty Acids Organic, monobasic acids derived from hydrocarbons by the equivalent of oxidation of a methyl group to an alcohol, aldehyde, and then acid. Fatty acids are saturated and unsaturated (FATTY ACIDS, UNSATURATED). (Grant & Hackh's Chemical Dictionary, 5th ed) Aliphatic Acid,Esterified Fatty Acid,Fatty Acid,Fatty Acids, Esterified,Fatty Acids, Saturated,Saturated Fatty Acid,Aliphatic Acids,Acid, Aliphatic,Acid, Esterified Fatty,Acid, Saturated Fatty,Esterified Fatty Acids,Fatty Acid, Esterified,Fatty Acid, Saturated,Saturated Fatty Acids
D005786 Gene Expression Regulation Any of the processes by which nuclear, cytoplasmic, or intercellular factors influence the differential control (induction or repression) of gene action at the level of transcription or translation. Gene Action Regulation,Regulation of Gene Expression,Expression Regulation, Gene,Regulation, Gene Action,Regulation, Gene Expression
D005934 Glucagon A 29-amino acid pancreatic peptide derived from proglucagon which is also the precursor of intestinal GLUCAGON-LIKE PEPTIDES. Glucagon is secreted by PANCREATIC ALPHA CELLS and plays an important role in regulation of BLOOD GLUCOSE concentration, ketone metabolism, and several other biochemical and physiological processes. (From Gilman et al., Goodman and Gilman's The Pharmacological Basis of Therapeutics, 9th ed, p1511) Glucagon (1-29),Glukagon,HG-Factor,Hyperglycemic-Glycogenolytic Factor,Proglucagon (33-61),HG Factor,Hyperglycemic Glycogenolytic Factor
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014280 Triglycerides An ester formed from GLYCEROL and three fatty acid groups. Triacylglycerol,Triacylglycerols,Triglyceride
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured

Related Publications

Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
October 2023, Diabetes,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
August 1979, The American journal of physiology,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
April 1988, Digestive diseases and sciences,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
June 2018, Cell reports,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
May 2024, bioRxiv : the preprint server for biology,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
January 1957, Nutrition reviews,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
November 1998, The American journal of physiology,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
January 1981, Diabetologia,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
January 1960, Scandinavian journal of clinical and laboratory investigation,
Jing Hong, and Per Bendix Jeppesen, and Iver Nordentoft, and Kjeld Hermansen
April 1968, Klinische Wochenschrift,
Copied contents to your clipboard!