Beta-adrenoceptor-agonist and insulin actions on glucose metabolism in rat skeletal muscle in different thyroid states. 1991

G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
Department of Biochemistry, University of Oxford, U.K.

1. The actions of the beta-adrenoceptor agonist isoprenaline on glucose and glycogen metabolism, in the presence of various concentrations of insulin, were investigated in isolated soleus muscle preparations taken from eu-, hyper- and hypothyroid rats. 2. Hyperthyroidism, induced by 3,3',5-tri-iodo-D-thyronine (T3) administration for 5 days, increased the rate of lactate formation and suppressed the rate of glycogen synthesis in soleus muscle in response to isoprenaline, even in the presence of physiological or supraphysiological insulin concentrations. 3. Hypothyroidism, induced by administration of 6-n-propyl-2-thiouracil for 4 weeks, decreased the rate of isoprenaline-stimulated lactate formation at all insulin concentrations, but significantly decreased the responsiveness of lactate formation only at low insulin concentrations. In the presence of 100 or 10,000 mu-units of insulin/ml, the ability of isoprenaline to suppress the rate of glycogen synthesis was markedly impaired (inhibition at 100 mu-units of insulin/ml and 1 micro-M-isoprenaline: eu- 72.6 +/- 2.9%; hypo-41.0 +/- 2.1%; P less than 0.001). 4. Hyperthyroidism had no effect on the number or affinity of beta-adrenoceptors, defined by 125I-pindolol binding, or beta-adrenoceptor- or forskolin-stimulated adenylate cyclase activity in membrane preparations of gastrocnemius muscle, whereas hypothyroidism increased the beta-adrenoceptor density and decreased the beta-adrenoceptor-stimulated adenylate cyclase activity, without affecting the receptor affinity or forskolin-stimulated adenylate cyclase activity. 5. It is concluded that there is a complex interplay between insulin, catecholamines and thyroid hormones to regulate skeletal-muscle glucose metabolism. The changes observed in muscles in hypothyroidism may be explained, at least in part, by changes in beta-adrenoceptor-G-protein-adenylate cyclase coupling affecting the generation of cyclic AMP and the regulation of some of the key enzymes of glycogen metabolism; in contrast, the changes observed in muscles in hyperthyroidism do not appear to result from alterations at the level of the receptor-mediated second-messenger generation.

UI MeSH Term Description Entries
D006980 Hyperthyroidism Hypersecretion of THYROID HORMONES from the THYROID GLAND. Elevated levels of thyroid hormones increase BASAL METABOLIC RATE. Hyperthyroid,Primary Hyperthyroidism,Hyperthyroidism, Primary,Hyperthyroids
D007328 Insulin A 51-amino acid pancreatic hormone that plays a major role in the regulation of glucose metabolism, directly by suppressing endogenous glucose production (GLYCOGENOLYSIS; GLUCONEOGENESIS) and indirectly by suppressing GLUCAGON secretion and LIPOLYSIS. Native insulin is a globular protein comprised of a zinc-coordinated hexamer. Each insulin monomer containing two chains, A (21 residues) and B (30 residues), linked by two disulfide bonds. Insulin is used as a drug to control insulin-dependent diabetes mellitus (DIABETES MELLITUS, TYPE 1). Iletin,Insulin A Chain,Insulin B Chain,Insulin, Regular,Novolin,Sodium Insulin,Soluble Insulin,Chain, Insulin B,Insulin, Sodium,Insulin, Soluble,Regular Insulin
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D009132 Muscles Contractile tissue that produces movement in animals. Muscle Tissue,Muscle,Muscle Tissues,Tissue, Muscle,Tissues, Muscle
D011869 Radioligand Assay Quantitative determination of receptor (binding) proteins in body fluids or tissue using radioactively labeled binding reagents (e.g., antibodies, intracellular receptors, plasma binders). Protein-Binding Radioassay,Radioreceptor Assay,Assay, Radioligand,Assay, Radioreceptor,Assays, Radioligand,Assays, Radioreceptor,Protein Binding Radioassay,Protein-Binding Radioassays,Radioassay, Protein-Binding,Radioassays, Protein-Binding,Radioligand Assays,Radioreceptor Assays
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005947 Glucose A primary source of energy for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. It is used therapeutically in fluid and nutrient replacement. Dextrose,Anhydrous Dextrose,D-Glucose,Glucose Monohydrate,Glucose, (DL)-Isomer,Glucose, (alpha-D)-Isomer,Glucose, (beta-D)-Isomer,D Glucose,Dextrose, Anhydrous,Monohydrate, Glucose
D006003 Glycogen

Related Publications

G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
March 1996, British journal of pharmacology,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
October 2007, American journal of physiology. Endocrinology and metabolism,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
August 1985, The Journal of biological chemistry,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
November 1985, The Biochemical journal,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
January 1986, The Biochemical journal,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
April 1998, Journal of animal science,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
February 1997, The American journal of physiology,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
December 1985, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.),
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
December 2003, American journal of physiology. Endocrinology and metabolism,
G D Dimitriadis, and S J Richards, and M Parry-Billings, and B Leighton, and E A Newsholme, and R A Challiss
July 1988, Metabolism: clinical and experimental,
Copied contents to your clipboard!