Expression of the chicken homeobox-containing gene GHox-8 during embryonic chick limb development. 1991

C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
Department of Anatomy, School of Medicine, University of Connecticut Health Center, Farmington 06030.

Homeobox-containing genes are thought to be involved in the regulation of pattern formation and specification of positional information during vertebrate limb development. Because of its accessibility to microsurgical manipulation, the developing chick limb bud provides a powerful system for investigating the role of homeobox-containing genes in patterning events. We report the isolation from a chick limb bud cDNA library of a chicken homeobox-containing cDNA, which on the basis of its nucleotide and deduced amino acid sequences has been identified as the chicken cognate of mouse Hox-8. The gene encoding this chicken (Gallus) homeobox-containing cDNA has been designated GHox-8, and is a member of a family of vertebrate homeobox-containing genes that are highly similar in sequence to the Drosophila msh gene. GHox-8 encodes an mRNA transcript of about 3 kb that is expressed at several early stages of chick limb development. In situ and dot-blot hybridization analyses have revealed that GHox-8 is expressed in limb bud mesoderm in a temporal and spatial fashion consistent with its involvement in specifying anterior positional identity. At early stages (stages 20-21) of chick limb development when positional values along the anterior-posterior (A-P) axis are being specified, GHox-8 is expressed in high amounts in the anterior mesoderm of the wing bud. Little expression of the gene is detectable in the middle region of the wing bud mesoderm or in the posterior mesoderm that contains the zone of polarizing activity, which is thought to be the source of a diffusible morphogen, possibly retinoic acid, that specifies the A-P positional values of the skeletal elements of the limb according to its local concentration. Similarly, at later stages of development (stages 23-25), high expression of GHox-8 is localized to the proximal anterior periphery of the wing bud, with no detectable expression in the proximal dorsal and ventral (myogenic) regions, or in the chondrogenic central core. In the proximal posterior periphery of the wing bud at these later stages of development, expression of GHox-8 is limited to a small region in the mid-proximal periphery corresponding to the posterior necrotic zone in which programmed cell death is occurring. The possible involvement of GHox-8 in programmed cell death during limb development is also suggested by the fact that it is expressed in the necrotic interdigital mesenchyme in 6-7 day (stage 31-32) wing buds.(ABSTRACT TRUNCATED AT 400 WORDS)

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D002642 Chick Embryo The developmental entity of a fertilized chicken egg (ZYGOTE). The developmental process begins about 24 h before the egg is laid at the BLASTODISC, a small whitish spot on the surface of the EGG YOLK. After 21 days of incubation, the embryo is fully developed before hatching. Embryo, Chick,Chick Embryos,Embryos, Chick
D004247 DNA A deoxyribonucleotide polymer that is the primary genetic material of all cells. Eukaryotic and prokaryotic organisms normally contain DNA in a double-stranded state, yet several important biological processes transiently involve single-stranded regions. DNA, which consists of a polysugar-phosphate backbone possessing projections of purines (adenine and guanine) and pyrimidines (thymine and cytosine), forms a double helix that is held together by hydrogen bonds between these purines and pyrimidines (adenine to thymine and guanine to cytosine). DNA, Double-Stranded,Deoxyribonucleic Acid,ds-DNA,DNA, Double Stranded,Double-Stranded DNA,ds DNA
D005121 Extremities The farthest or outermost projections of the body, such as the HAND and FOOT. Limbs,Extremity,Limb
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D015152 Blotting, Northern Detection of RNA that has been electrophoretically separated and immobilized by blotting on nitrocellulose or other type of paper or nylon membrane followed by hybridization with labeled NUCLEIC ACID PROBES. Northern Blotting,Blot, Northern,Northern Blot,Blots, Northern,Blottings, Northern,Northern Blots,Northern Blottings

Related Publications

C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
December 1991, Development (Cambridge, England),
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
June 1992, Development (Cambridge, England),
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
March 1993, Developmental biology,
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
July 1991, Development (Cambridge, England),
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
November 1992, Development (Cambridge, England),
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
August 1998, Mechanisms of development,
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
January 1992, Biochemical and biophysical research communications,
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
April 1995, The European journal of neuroscience,
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
December 2001, Mechanisms of development,
C N Coelho, and L Sumoy, and B J Rodgers, and D R Davidson, and R E Hill, and W B Upholt, and R A Kosher
January 1993, Differentiation; research in biological diversity,
Copied contents to your clipboard!