Common fragile sites as targets for chromosome rearrangements. 2006

Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
Department of Human, Genetics University of Michigan, 4909 Buhl Box 0618, 1241 E. Catherine Street, Ann Arbor, MI 48109, USA.

Common fragile sites are large chromosomal regions that preferentially exhibit gaps or breaks after DNA synthesis is partially perturbed. Fragile site instability in cultured cells is well documented and includes gaps and breaks on metaphase chromosomes, translocation and deletions breakpoints, and sister chromosome exchanges. In recent years, much has been learned about the genomic structure at fragile sites and the cellular mechanisms that monitor their stability. The study of fragile sites has merged with that of cell cycle checkpoints and DNA repair, with multiple proteins from these pathways implicated in fragile site stability, including ATR, BRCA1, CHK1, and RAD51. Since their discovery, fragile sites have been implicated in constitutional and cancer chromosome rearrangements in vivo and recent studies suggest that common fragile sites may serve as markers of chromosome damage caused by replication stress during early tumorigenesis. Here we review the relationship of fragile sites to chromosome rearrangements, particularly in tumor cells, and discuss the mechanisms that may be involved.

UI MeSH Term Description Entries
D008957 Models, Genetic Theoretical representations that simulate the behavior or activity of genetic processes or phenomena. They include the use of mathematical equations, computers, and other electronic equipment. Genetic Models,Genetic Model,Model, Genetic
D009369 Neoplasms New abnormal growth of tissue. Malignant neoplasms show a greater degree of anaplasia and have the properties of invasion and metastasis, compared to benign neoplasms. Benign Neoplasm,Cancer,Malignant Neoplasm,Tumor,Tumors,Benign Neoplasms,Malignancy,Malignant Neoplasms,Neoplasia,Neoplasm,Neoplasms, Benign,Cancers,Malignancies,Neoplasias,Neoplasm, Benign,Neoplasm, Malignant,Neoplasms, Malignant
D002873 Chromosome Fragility Susceptibility of chromosomes to breakage leading to translocation; CHROMOSOME INVERSION; SEQUENCE DELETION; or other CHROMOSOME BREAKAGE related aberrations. Chromosomal Fragility,Fragility, Chromosomal,Fragility, Chromosome
D002877 Chromosomes, Human Very long DNA molecules and associated proteins, HISTONES, and non-histone chromosomal proteins (CHROMOSOMAL PROTEINS, NON-HISTONE). Normally 46 chromosomes, including two sex chromosomes are found in the nucleus of human cells. They carry the hereditary information of the individual. Chromosome, Human,Human Chromosome,Human Chromosomes
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D014178 Translocation, Genetic A type of chromosome aberration characterized by CHROMOSOME BREAKAGE and transfer of the broken-off portion to another location, often to a different chromosome. Chromosomal Translocation,Translocation, Chromosomal,Chromosomal Translocations,Genetic Translocation,Genetic Translocations,Translocations, Chromosomal,Translocations, Genetic
D014407 Tumor Cells, Cultured Cells grown in vitro from neoplastic tissue. If they can be established as a TUMOR CELL LINE, they can be propagated in cell culture indefinitely. Cultured Tumor Cells,Neoplastic Cells, Cultured,Cultured Neoplastic Cells,Cell, Cultured Neoplastic,Cell, Cultured Tumor,Cells, Cultured Neoplastic,Cells, Cultured Tumor,Cultured Neoplastic Cell,Cultured Tumor Cell,Neoplastic Cell, Cultured,Tumor Cell, Cultured
D042822 Genomic Instability An increased tendency of the GENOME to acquire MUTATIONS when various processes involved in maintaining and replicating the genome are dysfunctional. Genome Instability,Genome Stability,Genomic Stability,Genome Instabilities,Genome Stabilities,Genomic Instabilities,Genomic Stabilities,Instabilities, Genome,Instabilities, Genomic,Instability, Genome,Instability, Genomic,Stabilities, Genome,Stabilities, Genomic,Stability, Genome,Stability, Genomic
D043283 Chromosome Fragile Sites Specific loci that show up during KARYOTYPING as a gap (an uncondensed stretch in closer views) on a CHROMATID arm after culturing cells under specific conditions. These sites are associated with an increase in CHROMOSOME FRAGILITY. They are classified as common or rare, and by the specific culture conditions under which they develop. Fragile site loci are named by the letters "FRA" followed by a designation for the specific chromosome, and a letter which refers to which fragile site of that chromosome (e.g. FRAXA refers to fragile site A on the X chromosome. It is a rare, folic acid-sensitive fragile site associated with FRAGILE X SYNDROME.) Fragile Sites, Chromosome,Chromosome Fragile Site,Fragile Site, Chromosome,Site, Chromosome Fragile,Sites, Chromosome Fragile

Related Publications

Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
May 1985, Clinical genetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
July 1985, Clinical genetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
September 1984, Clinical genetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
October 1987, Annals of human genetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
April 2004, International journal of hematology,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
January 1985, Cancer genetics and cytogenetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
January 2007, Annual review of genetics,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
January 2006, Cancer letters,
Martin F Arlt, and Sandra G Durkin, and Ryan L Ragland, and Thomas W Glover
January 2003, Cytogenetic and genome research,
Copied contents to your clipboard!