The steroid hormone biosynthesis pathway as a target for endocrine-disrupting chemicals. 2006

J Thomas Sanderson
INRS-Institut Armand-Frappier, Université du Québec, 245 Hymus Boulevard (Pointe-Claire), Montréal, Québec, Canada H9R 1G6. thomas.sanderson@iaf.inrs.ca

Various chemicals found in the human and wildlife environments have the potential to disrupt endocrine functions in exposed organisms. Increasingly, the enzymes involved in the steroid biosynthesis pathway are being recognized as important targets for the actions of various endocrine-disrupting chemicals. Interferences with steroid biosynthesis may result in impaired reproduction, alterations in (sexual) differentiation, growth, and development and the development of certain cancers. Steroid hormone synthesis is controlled by the activity of several highly substrate-selective cytochrome P450 enzymes and a number of steroid dehydrogenases and reductases. Particularly aromatase (CYP19), the enzyme that converts androgens to estrogens, has been the subject of studies into the mechanisms by which chemicals interfere with sex steroid hormone homeostasis and function, often related to (de)feminization and (de)masculinazation processes. Studies in vivo and in vitro have focussed on ovarian and testicular function, with less attention given to other steroidogenic organs, such as the adrenal cortex. This review aims to provide a comprehensive overview of the state of knowledge regarding the mechanisms by which chemicals interfere with the function of steroidogenic enzymes in various tissues and organisms. The endocrine toxicities and mechanisms of action related to steroidogenesis of a number of classes of drugs and environmental contaminants are discussed. In addition, several potential in vitro bioassays are reviewed for their usefulness as screening tools for the detection of chemicals that can interfere with steroidogenesis. Analysis of the currently scattered state of knowledge indicates that still relatively little is known about the underlying mechanisms of interference of chemicals with steroidogenesis and their potential toxicity in steroidogenic tissues, neither in humans nor in wildlife. Considerably more detailed and systematic research in this area of (endocrine) toxicology is required for a better understanding of risks to humans and wildlife.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D003577 Cytochrome P-450 Enzyme System A superfamily of hundreds of closely related HEMEPROTEINS found throughout the phylogenetic spectrum, from animals, plants, fungi, to bacteria. They include numerous complex monooxygenases (MIXED FUNCTION OXYGENASES). In animals, these P-450 enzymes serve two major functions: (1) biosynthesis of steroids, fatty acids, and bile acids; (2) metabolism of endogenous and a wide variety of exogenous substrates, such as toxins and drugs (BIOTRANSFORMATION). They are classified, according to their sequence similarities rather than functions, into CYP gene families (>40% homology) and subfamilies (>59% homology). For example, enzymes from the CYP1, CYP2, and CYP3 gene families are responsible for most drug metabolism. Cytochrome P-450,Cytochrome P-450 Enzyme,Cytochrome P-450-Dependent Monooxygenase,P-450 Enzyme,P450 Enzyme,CYP450 Family,CYP450 Superfamily,Cytochrome P-450 Enzymes,Cytochrome P-450 Families,Cytochrome P-450 Monooxygenase,Cytochrome P-450 Oxygenase,Cytochrome P-450 Superfamily,Cytochrome P450,Cytochrome P450 Superfamily,Cytochrome p450 Families,P-450 Enzymes,P450 Enzymes,Cytochrome P 450,Cytochrome P 450 Dependent Monooxygenase,Cytochrome P 450 Enzyme,Cytochrome P 450 Enzyme System,Cytochrome P 450 Enzymes,Cytochrome P 450 Families,Cytochrome P 450 Monooxygenase,Cytochrome P 450 Oxygenase,Cytochrome P 450 Superfamily,Enzyme, Cytochrome P-450,Enzyme, P-450,Enzyme, P450,Enzymes, Cytochrome P-450,Enzymes, P-450,Enzymes, P450,Monooxygenase, Cytochrome P-450,Monooxygenase, Cytochrome P-450-Dependent,P 450 Enzyme,P 450 Enzymes,P-450 Enzyme, Cytochrome,P-450 Enzymes, Cytochrome,Superfamily, CYP450,Superfamily, Cytochrome P-450,Superfamily, Cytochrome P450
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012739 Gonadal Steroid Hormones Steroid hormones produced by the GONADS. They stimulate reproductive organs, germ cell maturation, and the secondary sex characteristics in the males and the females. The major sex steroid hormones include ESTRADIOL; PROGESTERONE; and TESTOSTERONE. Gonadal Steroid Hormone,Sex Hormone,Sex Steroid Hormone,Sex Steroid Hormones,Sex Hormones,Hormone, Gonadal Steroid,Hormone, Sex,Hormone, Sex Steroid,Hormones, Gonadal Steroid,Hormones, Sex Steroid,Steroid Hormone, Gonadal,Steroid Hormone, Sex,Steroid Hormones, Gonadal,Steroid Hormones, Sex
D052244 Endocrine Disruptors Exogenous agents, synthetic and naturally occurring, which are capable of disrupting the functions of the ENDOCRINE SYSTEM including the maintenance of HOMEOSTASIS and the regulation of developmental processes. Endocrine disruptors are compounds that can mimic HORMONES, or enhance or block the binding of hormones to their receptors, or otherwise lead to activating or inhibiting the endocrine signaling pathways and hormone metabolism. Endocrine Disrupting Chemical,Endocrine Disrupting Chemicals,Endocrine Disruptor,Endocrine Disruptor Effect,Endocrine Disruptor Effects,Chemical, Endocrine Disrupting,Chemicals, Endocrine Disrupting,Disrupting Chemical, Endocrine,Disruptor Effect, Endocrine,Disruptor Effects, Endocrine,Disruptor, Endocrine,Disruptors, Endocrine,Effect, Endocrine Disruptor,Effects, Endocrine Disruptor
D065607 Cytochrome P-450 Enzyme Inhibitors Drugs and compounds which inhibit or antagonize the biosynthesis or actions of CYTOCHROME P-450 ENZYMES. Cytochrome P-450 Inhibitors,Cytochrome P-450 Monooxygenase Inhibitors,Cytochrome P-450 Oxygenase Inhibitors,Cytochrome P-450-Dependent Monooxygenase Inhibitors,P-450 Enzyme Inhibitors,P450 Enzyme Inhibitors,Cytochrome P 450 Dependent Monooxygenase Inhibitors,Cytochrome P 450 Enzyme Inhibitors,Cytochrome P 450 Inhibitors,Cytochrome P 450 Monooxygenase Inhibitors,Cytochrome P 450 Oxygenase Inhibitors,Enzyme Inhibitors, P-450,Enzyme Inhibitors, P450,Inhibitors, Cytochrome P-450,Inhibitors, P-450 Enzyme,Inhibitors, P450 Enzyme,P 450 Enzyme Inhibitors,P-450 Inhibitors, Cytochrome

Related Publications

J Thomas Sanderson
March 2006, Best practice & research. Clinical endocrinology & metabolism,
J Thomas Sanderson
July 2006, Marine environmental research,
J Thomas Sanderson
November 2018, The Journal of endocrinology,
J Thomas Sanderson
January 2021, Advances in pharmacology (San Diego, Calif.),
J Thomas Sanderson
January 2021, Advances in pharmacology (San Diego, Calif.),
J Thomas Sanderson
January 2020, Frontiers in endocrinology,
J Thomas Sanderson
October 2011, The Journal of steroid biochemistry and molecular biology,
J Thomas Sanderson
November 2016, JAMA internal medicine,
J Thomas Sanderson
September 2021, Best practice & research. Clinical endocrinology & metabolism,
Copied contents to your clipboard!