Deterioration of rat-liver mitochondria during isopycnic centrifugation in an isoosmotic medium. 1975

M Collot, and S Wattiaux-De Coninck, and R Wattiaux

We have investigated the effect of the centrifugation speed on the behavior of rat-liver mitochondria during isopycnic centrifugation in an isoosmotic medium. The gradient was made with a macromolecular compound, glycogen dissolved in 0.25 M aqueous sucrose. The distribution curves of several mitochondrial enzymes change when the centrifugation reaches a certain speed: they are shifted toward regions of lower density. The results are plausibly explained by supposing that the inner mitochondrial membrane becomes permeable to sucrose at high centrifugation speeds, and that the granules swell. The main causal agent of the phenomenon is the hydrostatic pressure the mitochondria are subjected to during centrifugation. Morphological observations show that mitochondria are markedly deteriorated when centrifuged at high speed in the glycogen gradient; they are swollen and the outer membrane is broken; also frequently, a large electron-dense granule is seen in the matrix near the inner mambrane.

UI MeSH Term Description Entries
D008291 Malate Dehydrogenase An enzyme that catalyzes the conversion of (S)-malate and NAD+ to oxaloacetate and NADH. EC 1.1.1.37. Malic Dehydrogenase,NAD-Malate Dehydrogenase,Dehydrogenase, Malate,Dehydrogenase, Malic,Dehydrogenase, NAD-Malate,NAD Malate Dehydrogenase
D008566 Membranes Thin layers of tissue which cover parts of the body, separate adjacent cavities, or connect adjacent structures. Membrane Tissue,Membrane,Membrane Tissues,Tissue, Membrane,Tissues, Membrane
D008854 Microscopy, Electron Microscopy using an electron beam, instead of light, to visualize the sample, thereby allowing much greater magnification. The interactions of ELECTRONS with specimens are used to provide information about the fine structure of that specimen. In TRANSMISSION ELECTRON MICROSCOPY the reactions of the electrons that are transmitted through the specimen are imaged. In SCANNING ELECTRON MICROSCOPY an electron beam falls at a non-normal angle on the specimen and the image is derived from the reactions occurring above the plane of the specimen. Electron Microscopy
D008930 Mitochondria, Liver Mitochondria in hepatocytes. As in all mitochondria, there are an outer membrane and an inner membrane, together creating two separate mitochondrial compartments: the internal matrix space and a much narrower intermembrane space. In the liver mitochondrion, an estimated 67% of the total mitochondrial proteins is located in the matrix. (From Alberts et al., Molecular Biology of the Cell, 2d ed, p343-4) Liver Mitochondria,Liver Mitochondrion,Mitochondrion, Liver
D008995 Monoamine Oxidase An enzyme that catalyzes the oxidative deamination of naturally occurring monoamines. It is a flavin-containing enzyme that is localized in mitochondrial membranes, whether in nerve terminals, the liver, or other organs. Monoamine oxidase is important in regulating the metabolic degradation of catecholamines and serotonin in neural or target tissues. Hepatic monoamine oxidase has a crucial defensive role in inactivating circulating monoamines or those, such as tyramine, that originate in the gut and are absorbed into the portal circulation. (From Goodman and Gilman's, The Pharmacological Basis of Therapeutics, 8th ed, p415) EC 1.4.3.4. Amine Oxidase (Flavin-Containing),MAO,MAO-A,MAO-B,Monoamine Oxidase A,Monoamine Oxidase B,Type A Monoamine Oxidase,Type B Monoamine Oxidase,Tyramine Oxidase,MAO A,MAO B,Oxidase, Monoamine,Oxidase, Tyramine
D009994 Osmolar Concentration The concentration of osmotically active particles in solution expressed in terms of osmoles of solute per liter of solution. Osmolality is expressed in terms of osmoles of solute per kilogram of solvent. Ionic Strength,Osmolality,Osmolarity,Concentration, Osmolar,Concentrations, Osmolar,Ionic Strengths,Osmolalities,Osmolar Concentrations,Osmolarities,Strength, Ionic,Strengths, Ionic
D002458 Cell Fractionation Techniques to partition various components of the cell into SUBCELLULAR FRACTIONS. Cell Fractionations,Fractionation, Cell,Fractionations, Cell
D002499 Centrifugation, Density Gradient Separation of particles according to density by employing a gradient of varying densities. At equilibrium each particle settles in the gradient at a point equal to its density. (McGraw-Hill Dictionary of Scientific and Technical Terms, 4th ed) Centrifugations, Density Gradient,Density Gradient Centrifugation,Density Gradient Centrifugations,Gradient Centrifugation, Density,Gradient Centrifugations, Density
D003576 Electron Transport Complex IV A multisubunit enzyme complex containing CYTOCHROME A GROUP; CYTOCHROME A3; two copper atoms; and 13 different protein subunits. It is the terminal oxidase complex of the RESPIRATORY CHAIN and collects electrons that are transferred from the reduced CYTOCHROME C GROUP and donates them to molecular OXYGEN, which is then reduced to water. The redox reaction is simultaneously coupled to the transport of PROTONS across the inner mitochondrial membrane. Cytochrome Oxidase,Cytochrome aa3,Cytochrome-c Oxidase,Cytochrome Oxidase Subunit III,Cytochrome a,a3,Cytochrome c Oxidase Subunit VIa,Cytochrome-c Oxidase (Complex IV),Cytochrome-c Oxidase Subunit III,Cytochrome-c Oxidase Subunit IV,Ferrocytochrome c Oxygen Oxidoreductase,Heme aa3 Cytochrome Oxidase,Pre-CTOX p25,Signal Peptide p25-Subunit IV Cytochrome Oxidase,Subunit III, Cytochrome Oxidase,p25 Presequence Peptide-Cytochrome Oxidase,Cytochrome c Oxidase,Cytochrome c Oxidase Subunit III,Cytochrome c Oxidase Subunit IV,Oxidase, Cytochrome,Oxidase, Cytochrome-c,Signal Peptide p25 Subunit IV Cytochrome Oxidase,p25 Presequence Peptide Cytochrome Oxidase
D006003 Glycogen

Related Publications

M Collot, and S Wattiaux-De Coninck, and R Wattiaux
September 1971, European journal of biochemistry,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
May 1975, Archives internationales de physiologie et de biochimie,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
May 1974, European journal of biochemistry,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
August 1978, The Journal of cell biology,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
August 1974, Molecular and cellular biochemistry,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
February 1974, Archives internationales de physiologie et de biochimie,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
January 1974, Acta physiologica et pharmacologica Bulgarica,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
August 1982, Archives of biochemistry and biophysics,
M Collot, and S Wattiaux-De Coninck, and R Wattiaux
January 1968, The Wistar Institute symposium monograph,
Copied contents to your clipboard!