Inhibitory postsynaptic potentials in lumbar motoneurons remain depolarizing after neonatal spinal cord transection in the rat. 2006

Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
CNRS, P3M, 31 Chemin Joseph Aiguier, F-13402 Marseille cx 20, France.

GABA and glycine are excitatory in the immature spinal cord and become inhibitory during development. The shift from depolarizing to hyperpolarizing inhibitory postsynaptic potentials (IPSPs) occurs during the perinatal period in the rat, a time window during which the projections from the brain stem reach the lumbar enlargement. In this study, we investigated the effects of suppressing influences of the brain on lumbar motoneurons during this critical period for the negative shift of the reversal potential of IPSPs (E(IPSP)). The spinal cord was transected at the thoracic level on the day of birth [postnatal day 0 (P0)]. E(IPSP), at P4-P7, was significantly more depolarized in cord-transected than in cord-intact animals (E(IPSP) above and below resting potential, respectively). E(IPSP) at P4-P7 in cord-transected animals was close to E(IPSP) at P0-P2. K-Cl cotransporter KCC2 immunohistochemistry revealed a developmental increase of staining in the area of lumbar motoneurons between P0 and P7 in cord-intact animals; this increase was not observed after spinal cord transection. The motoneurons recorded from cord-transected animals were less sensitive to the experimental manipulations aimed at testing the functionality of the KCC2 system, which is sensitive to [K(+)](o) and blocked by bumetanide. Although bumetanide significantly depolarized E(IPSP), the shift was less pronounced than in cord-intact animals. In addition, a reduction of [K(+)](o) affected E(IPSP) significantly only in cord-intact animals. Therefore influences from the brain stem may play an essential role in the maturation of inhibitory synaptic transmission, possibly by upregulating KCC2 and its functionality.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008564 Membrane Potentials The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences
D009046 Motor Neurons Neurons which activate MUSCLE CELLS. Neurons, Motor,Alpha Motorneurons,Motoneurons,Motor Neurons, Alpha,Neurons, Alpha Motor,Alpha Motor Neuron,Alpha Motor Neurons,Alpha Motorneuron,Motoneuron,Motor Neuron,Motor Neuron, Alpha,Motorneuron, Alpha,Motorneurons, Alpha,Neuron, Alpha Motor,Neuron, Motor
D002034 Bumetanide A sulfamyl diuretic. Bumedyl,Bumethanide,Bumex,Burinex,Drenural,Fordiuran,Miccil,PF-1593,PF 1593,PF1593
D002818 Cordotomy Any operation on the spinal cord. (Stedman, 26th ed) Chordotomy,Chordotomies,Cordotomies
D004232 Diuretics Agents that promote the excretion of urine through their effects on kidney function. Diuretic,Diuretic Effect,Diuretic Effects,Effect, Diuretic,Effects, Diuretic
D000096922 K Cl- Cotransporters A subclass of symporters that specifically transport POTASSIUM and CHLORIDE ions across cellular membranes. Potassium chloride cotransporters play roles in regulating cell volume and intracellular chloride concentration. Electroneutral Potassium-Chloride Co-transporter 3,Electroneutral Potassium-Chloride Cotransporter 3,K Cl- Co-transporters,K(+), Cl(-)-Co-transporters,K(+), Cl(-)-Cotransporters,K-Cl Co-transporter,K-Cl Co-transporter 3,K-Cl Cotransporter,K-Cl Cotransporter 3,KCC2 Co-transporter,KCC2 Cotransporter,KCC3 Co-transporter,KCC3 Cotransporter,KCC4 Co-transporter,KCC4 Cotransporter,Potassium-Chloride Co-transporter 2,Potassium-Chloride Co-transporter 4,Potassium-Chloride Co-transporters,Potassium-Chloride Cotransporter 2,Potassium-Chloride Cotransporter 4,Potassium-Chloride Cotransporters,Potassium-Chloride Symporters,SLC12A5 Protein,SLC12A6 Protein,SLC12A7 Protein,Solute Carrier Family 12 Member 5,Solute Carrier Family 12 Member 6,Solute carrier family 12 member 7,Cl- Co-transporters, K,Co-transporter 2, Potassium-Chloride,Co-transporter 3, K-Cl,Co-transporter 4, Potassium-Chloride,Co-transporter, K-Cl,Co-transporter, KCC2,Co-transporter, KCC3,Co-transporter, KCC4,Co-transporters, K Cl-,Co-transporters, Potassium-Chloride,Cotransporter, K-Cl,Cotransporter, KCC2,Cotransporter, KCC3,Cotransporter, KCC4,Cotransporters, K Cl-,Cotransporters, Potassium-Chloride,Electroneutral Potassium Chloride Co transporter 3,Electroneutral Potassium Chloride Cotransporter 3,K Cl Co transporter,K Cl Co transporter 3,K Cl Co transporters,K Cl Cotransporter,K Cl Cotransporter 3,K Cl Cotransporters,KCC2 Co transporter,KCC3 Co transporter,KCC4 Co transporter,Potassium Chloride Co transporter 2,Potassium Chloride Co transporter 4,Potassium Chloride Co transporters,Potassium Chloride Cotransporter 2,Potassium Chloride Cotransporter 4,Potassium Chloride Cotransporters,Potassium Chloride Symporters,Protein, SLC12A5,Protein, SLC12A6,Protein, SLC12A7
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000831 Animals, Newborn Refers to animals in the period of time just after birth. Animals, Neonatal,Animal, Neonatal,Animal, Newborn,Neonatal Animal,Neonatal Animals,Newborn Animal,Newborn Animals

Related Publications

Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
January 2011, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
March 1987, Electroencephalography and clinical neurophysiology,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
November 1981, Brain research,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
August 1998, Journal of neurophysiology,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
January 1967, Zhurnal vysshei nervnoi deiatelnosti imeni I P Pavlova,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
October 1972, Experimental neurology,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
January 1990, Experimental brain research,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
November 1987, Experimental neurology,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
March 1993, Progress in neurobiology,
Céline Jean-Xavier, and Jean-François Pflieger, and Sylvie Liabeuf, and Laurent Vinay
January 2010, Frontiers in neural circuits,
Copied contents to your clipboard!