Unilateral up-regulation of glutamate receptors in limbic regions of amygdaloid-kindled rats. 1991

M Cincotta, and N A Young, and P M Beart
University of Melbourne, Department of Medicine, Austin Hospital, Heidelberg, Victoria, Australia.

Quantitative autoradiography was used to examine central binding sites for L-[3H]glutamate in amygdaloid-kindled rats since receptors for excitatory amino acids have been implicated in epileptiform activity and seizure behaviors. In tissue from rats killed five days after two kindled seizures, the ipsilateral hippocampus, entorhinal, perirhinal and parietal cortices had significantly (35-100%) greater densities of binding sites for L-[3H]glutamate than the opposite, contralateral side or operated, unstimulated controls. These regions receive excitatory inputs from the amygdala via the entorhinal cortex. Dissociation constants were not altered and significant differences were not observed in the binding parameters for L-[3H]glutamate between control and kindled rats or ipsilateral and contralateral sides of the amygdala, corpus striatum, nucleus accumbens or substantia nigra. The proportion and affinity of N-methyl-D-aspartate (NMDA)-sensitive binding sites for L-[3H]glutamate was unchanged after kindling, as were the relative proportions of kainate- and AMPA-(DL-alpha-amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid) sensitive sites. However, the density of NMDA and non-NMDA receptor subtypes was increased in the ipsilateral hippocampus, entorhinal, perirhinal and parietal cortices of kindled rats. These findings of specific, unilateral glutamate receptor up-regulation may indicate adaptive responses to the enhanced excitation found in kindling, and are consistent with other neuronal changes reported in early kindling.

UI MeSH Term Description Entries
D007696 Kindling, Neurologic The repeated weak excitation of brain structures, that progressively increases sensitivity to the same stimulation. Over time, this can lower the threshold required to trigger seizures. Kindlings, Neurologic,Neurologic Kindling,Neurologic Kindlings
D008297 Male Males
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D005971 Glutamates Derivatives of GLUTAMIC ACID. Included under this heading are a broad variety of acid forms, salts, esters, and amides that contain the 2-aminopentanedioic acid structure. Glutamic Acid Derivatives,Glutamic Acids,Glutaminic Acids
D006624 Hippocampus A curved elevation of GRAY MATTER extending the entire length of the floor of the TEMPORAL HORN of the LATERAL VENTRICLE (see also TEMPORAL LOBE). The hippocampus proper, subiculum, and DENTATE GYRUS constitute the hippocampal formation. Sometimes authors include the ENTORHINAL CORTEX in the hippocampal formation. Ammon Horn,Cornu Ammonis,Hippocampal Formation,Subiculum,Ammon's Horn,Hippocampus Proper,Ammons Horn,Formation, Hippocampal,Formations, Hippocampal,Hippocampal Formations,Hippocampus Propers,Horn, Ammon,Horn, Ammon's,Proper, Hippocampus,Propers, Hippocampus,Subiculums
D000679 Amygdala Almond-shaped group of basal nuclei anterior to the INFERIOR HORN OF THE LATERAL VENTRICLE of the TEMPORAL LOBE. The amygdala is part of the limbic system. Amygdaloid Body,Amygdaloid Nuclear Complex,Amygdaloid Nucleus,Archistriatum,Corpus Amygdaloideum,Intercalated Amygdaloid Nuclei,Massa Intercalata,Nucleus Amygdalae,Amygdalae, Nucleus,Amygdaloid Bodies,Amygdaloid Nuclear Complices,Amygdaloid Nuclei, Intercalated,Amygdaloid Nucleus, Intercalated,Amygdaloideum, Corpus,Amygdaloideums, Corpus,Archistriatums,Complex, Amygdaloid Nuclear,Complices, Amygdaloid Nuclear,Corpus Amygdaloideums,Intercalata, Massa,Intercalatas, Massa,Intercalated Amygdaloid Nucleus,Massa Intercalatas,Nuclear Complex, Amygdaloid,Nuclear Complices, Amygdaloid,Nuclei, Intercalated Amygdaloid,Nucleus, Amygdaloid,Nucleus, Intercalated Amygdaloid
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001345 Autoradiography The making of a radiograph of an object or tissue by recording on a photographic plate the radiation emitted by radioactive material within the object. (Dorland, 27th ed) Radioautography
D015854 Up-Regulation A positive regulatory effect on physiological processes at the molecular, cellular, or systemic level. At the molecular level, the major regulatory sites include membrane receptors, genes (GENE EXPRESSION REGULATION), mRNAs (RNA, MESSENGER), and proteins. Receptor Up-Regulation,Upregulation,Up-Regulation (Physiology),Up Regulation
D016194 Receptors, N-Methyl-D-Aspartate A class of ionotropic glutamate receptors characterized by affinity for N-methyl-D-aspartate. NMDA receptors have an allosteric binding site for glycine which must be occupied for the channel to open efficiently and a site within the channel itself to which magnesium ions bind in a voltage-dependent manner. The positive voltage dependence of channel conductance and the high permeability of the conducting channel to calcium ions (as well as to monovalent cations) are important in excitotoxicity and neuronal plasticity. N-Methyl-D-Aspartate Receptor,N-Methyl-D-Aspartate Receptors,NMDA Receptor,NMDA Receptor-Ionophore Complex,NMDA Receptors,Receptors, NMDA,N-Methylaspartate Receptors,Receptors, N-Methylaspartate,N Methyl D Aspartate Receptor,N Methyl D Aspartate Receptors,N Methylaspartate Receptors,NMDA Receptor Ionophore Complex,Receptor, N-Methyl-D-Aspartate,Receptor, NMDA,Receptors, N Methyl D Aspartate,Receptors, N Methylaspartate

Related Publications

M Cincotta, and N A Young, and P M Beart
December 1980, Experimental neurology,
M Cincotta, and N A Young, and P M Beart
March 2007, Zhejiang da xue xue bao. Yi xue ban = Journal of Zhejiang University. Medical sciences,
M Cincotta, and N A Young, and P M Beart
June 2009, Chinese medical journal,
M Cincotta, and N A Young, and P M Beart
May 1982, Pharmacology, biochemistry, and behavior,
M Cincotta, and N A Young, and P M Beart
September 1989, Journal of neurochemistry,
M Cincotta, and N A Young, and P M Beart
May 1998, Epilepsy research,
M Cincotta, and N A Young, and P M Beart
November 1984, Journal of neurochemistry,
M Cincotta, and N A Young, and P M Beart
January 1985, Folia psychiatrica et neurologica japonica,
M Cincotta, and N A Young, and P M Beart
December 1993, Brain research,
Copied contents to your clipboard!