[Visualizing single fluorophores in live cells]. 2006

T A Nenasheva, and G I Mashanov

The methods have been described that can be used to visualize single fluorescent molecules in live cells: laser epifluorescent, confocal, near-field, two-photon, and total internal reflection microscopy. Each method has its own advantages and limitations. We showed that total internal reflection microscopy is a method of choice for single fluorophore visualisation near substrate-medium interface. It can be used to study receptors, ion channels, and many cytoskeleton or signalling molecules located at or in close proximity to basal cell membrane. It was shown that it is very important to use rigorous criteria for single fluorophore identification since these objects emit a limited number of photons before irreversible photo-bleaching, and their fluorescence is often obscured by cell auto-fluorescence and out-of-focus fluorescence. Methods used for lateral mobility studies of single molecules floating on cell membrane were also described.

UI MeSH Term Description Entries
D008024 Ligands A molecule that binds to another molecule, used especially to refer to a small molecule that binds specifically to a larger molecule, e.g., an antigen binding to an antibody, a hormone or neurotransmitter binding to a receptor, or a substrate or allosteric effector binding to an enzyme. Ligands are also molecules that donate or accept a pair of electrons to form a coordinate covalent bond with the central metal atom of a coordination complex. (From Dorland, 27th ed) Ligand
D008856 Microscopy, Fluorescence Microscopy of specimens stained with fluorescent dye (usually fluorescein isothiocyanate) or of naturally fluorescent materials, which emit light when exposed to ultraviolet or blue light. Immunofluorescence microscopy utilizes antibodies that are labeled with fluorescent dye. Fluorescence Microscopy,Immunofluorescence Microscopy,Microscopy, Immunofluorescence,Fluorescence Microscopies,Immunofluorescence Microscopies,Microscopies, Fluorescence,Microscopies, Immunofluorescence
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011506 Proteins Linear POLYPEPTIDES that are synthesized on RIBOSOMES and may be further modified, crosslinked, cleaved, or assembled into complex proteins with several subunits. The specific sequence of AMINO ACIDS determines the shape the polypeptide will take, during PROTEIN FOLDING, and the function of the protein. Gene Products, Protein,Gene Proteins,Protein,Protein Gene Products,Proteins, Gene
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D002477 Cells The fundamental, structural, and functional units or subunits of living organisms. They are composed of CYTOPLASM containing various ORGANELLES and a CELL MEMBRANE boundary. Cell
D005456 Fluorescent Dyes Chemicals that emit light after excitation by light. The wave length of the emitted light is usually longer than that of the incident light. Fluorochromes are substances that cause fluorescence in other substances, i.e., dyes used to mark or label other compounds with fluorescent tags. Flourescent Agent,Fluorescent Dye,Fluorescent Probe,Fluorescent Probes,Fluorochrome,Fluorochromes,Fluorogenic Substrates,Fluorescence Agents,Fluorescent Agents,Fluorogenic Substrate,Agents, Fluorescence,Agents, Fluorescent,Dyes, Fluorescent,Probes, Fluorescent,Substrates, Fluorogenic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent

Related Publications

T A Nenasheva, and G I Mashanov
March 2007, Biophysical journal,
T A Nenasheva, and G I Mashanov
May 2020, Methods and applications in fluorescence,
T A Nenasheva, and G I Mashanov
July 2016, Cell cycle (Georgetown, Tex.),
T A Nenasheva, and G I Mashanov
May 2019, Methods (San Diego, Calif.),
T A Nenasheva, and G I Mashanov
December 2022, Chemistry (Weinheim an der Bergstrasse, Germany),
T A Nenasheva, and G I Mashanov
February 2010, Journal of bioscience and bioengineering,
T A Nenasheva, and G I Mashanov
April 2023, Trends in cell biology,
T A Nenasheva, and G I Mashanov
March 2014, Journal of visualized experiments : JoVE,
T A Nenasheva, and G I Mashanov
July 2004, Proceedings of the National Academy of Sciences of the United States of America,
T A Nenasheva, and G I Mashanov
January 2016, Acta naturae,
Copied contents to your clipboard!