Modulation of calcium wave propagation in the dendrites and to the soma of rat hippocampal pyramidal neurons. 2006

Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
Department of Physiology, New York Medical College, Valhalla, NY 10595, USA.

Repetitive synaptic stimulation in the stratum radiatum (SR) evokes large amplitude Ca2+ waves in the thick apical dendrites of hippocampal CA1 pyramidal neurons. These waves are initiated by activation of metabotropic glutamate receptors (mGluRs), which mobilize inositol-1,4,5-trisphospate (IP3) and release Ca2+ from intracellular stores. We explored mechanisms that modulate the spatial properties of these waves. Higher stimulus current evoked waves of increasing spatial extent. Most waves did not propagate through the soma; the majority stopped close to the junction of the soma and apical dendrite. Pairing strong stimulation with one electrode and subthreshold stimulation with another (associative activation) extended the waves distally but failed to extend waves into the cell body. Pairing synaptic stimulation with backpropagating action potentials enhanced the likelihood of wave generation but did not extend the waves to the somatic region. Priming the stores with Ca2+ entry through voltage dependent channels modulated wave properties but did not extend them past the dendrites. These results are consistent with propagation failing due to the dilution of synaptically generated IP3 as it diffuses into the large volume of the soma (impedance mismatch). Synaptically activating waves in the presence of low concentrations of carbachol, which probably increased the tonic level of IP3 throughout the cell, enhanced the extent of propagation and generated waves that invaded the soma, as long as low-affinity indicators were used to detect the [Ca2+]i changes. Consistent with this explanation direct injection of IP3 into the soma promoted wave propagation into this region. Ca2+ waves that propagated through the cell body were interesting because they did not fill the volume of the soma, but passed through the centre, often with large amplitude. These waves may be particularly effective in activating gene expression and protein synthesis.

UI MeSH Term Description Entries
D009435 Synaptic Transmission The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002217 Carbachol A slowly hydrolyzed CHOLINERGIC AGONIST that acts at both MUSCARINIC RECEPTORS and NICOTINIC RECEPTORS. Carbamylcholine,Carbacholine,Carbamann,Carbamoylcholine,Carbastat,Carbocholine,Carboptic,Doryl,Isopto Carbachol,Jestryl,Miostat,Carbachol, Isopto
D003712 Dendrites Extensions of the nerve cell body. They are short and branched and receive stimuli from other NEURONS. Dendrite
D000200 Action Potentials Abrupt changes in the membrane potential that sweep along the CELL MEMBRANE of excitable cells in response to excitation stimuli. Spike Potentials,Nerve Impulses,Action Potential,Impulse, Nerve,Impulses, Nerve,Nerve Impulse,Potential, Action,Potential, Spike,Potentials, Action,Potentials, Spike,Spike Potential
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D015544 Inositol 1,4,5-Trisphosphate Intracellular messenger formed by the action of phospholipase C on phosphatidylinositol 4,5-bisphosphate, which is one of the phospholipids that make up the cell membrane. Inositol 1,4,5-trisphosphate is released into the cytoplasm where it releases calcium ions from internal stores within the cell's endoplasmic reticulum. These calcium ions stimulate the activity of B kinase or calmodulin. 1,4,5-InsP3,Inositol 1,4,5-Triphosphate,Myo-Inositol 1,4,5-Trisphosphate,1,4,5-IP3,Myoinositol 1,4,5-Triphosphate
D017207 Rats, Sprague-Dawley A strain of albino rat used widely for experimental purposes because of its calmness and ease of handling. It was developed by the Sprague-Dawley Animal Company. Holtzman Rat,Rats, Holtzman,Sprague-Dawley Rat,Rats, Sprague Dawley,Holtzman Rats,Rat, Holtzman,Rat, Sprague-Dawley,Sprague Dawley Rat,Sprague Dawley Rats,Sprague-Dawley Rats
D051381 Rats The common name for the genus Rattus. Rattus,Rats, Laboratory,Rats, Norway,Rattus norvegicus,Laboratory Rat,Laboratory Rats,Norway Rat,Norway Rats,Rat,Rat, Laboratory,Rat, Norway,norvegicus, Rattus
D017966 Pyramidal Cells Projection neurons in the CEREBRAL CORTEX and the HIPPOCAMPUS. Pyramidal cells have a pyramid-shaped soma with the apex and an apical dendrite pointed toward the pial surface and other dendrites and an axon emerging from the base. The axons may have local collaterals but also project outside their cortical region. Pyramidal Neurons,Cell, Pyramidal,Cells, Pyramidal,Neuron, Pyramidal,Neurons, Pyramidal,Pyramidal Cell,Pyramidal Neuron

Related Publications

Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
December 1981, Brain research,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
January 1998, Annual review of physiology,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
June 1997, Nature,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
July 1999, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
March 2011, Neuroscience,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
June 1995, Journal of neurophysiology,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
October 1995, Journal of neurophysiology,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
August 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
June 2016, Proceedings of the National Academy of Sciences of the United States of America,
Shigeo Watanabe, and Min Hong, and Nechama Lasser-Ross, and William N Ross
April 2011, ACS chemical neuroscience,
Copied contents to your clipboard!