White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. 2006

Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
Institute of Normal Human Morphology, Marche Polytechnic University, Ancona, Italy.

Converging evidence indicates that white adipose tissue (WAT) is innervated by the sympathetic nervous system (SNS) based on immunohistochemical labeling of a SNS marker (tyrosine hydroxylase [TH]), tract tracing of WAT sympathetic postganglionic innervation, pseudorabies virus (PRV) transneuronal labeling of WAT SNS outflow neurons, and functional evidence from denervation studies. Recently, WAT para-SNS (PSNS) innervation was suggested because local surgical WAT sympathectomy (sparing hypothesized parasympathetic innervation) followed by PRV injection yielded infected cells in the vagal dorsomotor nucleus (DMV), a traditionally-recognized PSNS brain stem site. In addition, local surgical PSNS WAT denervation triggered WAT catabolic responses. We tested histologically whether WAT was parasympathetically innervated by searching for PSNS markers in rat, and normal (C57BL) and obese (ob/ob) mouse WAT. Vesicular acetylcholine transporter, vasoactive intestinal peptide and neuronal nitric oxide synthase immunoreactivities were absent in WAT pads (retroperitoneal, epididymal, inguinal subcutaneous) from all animals. Nearly all nerves innervating WAT vasculature and parenchyma that were labeled with protein gene product 9.5 (PGP9.5; pan-nerve marker) also contained TH, attesting to pervasive SNS innervation. When Siberian hamster inguinal WAT was sympathetically denervated via local injections of catecholaminergic toxin 6-hydroxydopamine (sparing putative parasympathetic nerves), subsequent PRV injection resulted in no central nervous system (CNS) or sympathetic chain infections suggesting no PSNS innervation. By contrast, vehicle-injected WAT subsequently inoculated with PRV had typical CNS/sympathetic chain viral infection patterns. Collectively, these data indicate no parasympathetic nerve markers in WAT of several species, with sparse DMV innervation and question the claim of PSNS WAT innervation as well as its functional significance.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D008297 Male Males
D008810 Mice, Inbred C57BL One of the first INBRED MOUSE STRAINS to be sequenced. This strain is commonly used as genetic background for transgenic mouse models. Refractory to many tumors, this strain is also preferred model for studying role of genetic variations in development of diseases. Mice, C57BL,Mouse, C57BL,Mouse, Inbred C57BL,C57BL Mice,C57BL Mice, Inbred,C57BL Mouse,C57BL Mouse, Inbred,Inbred C57BL Mice,Inbred C57BL Mouse
D008820 Mice, Obese Mutant mice exhibiting a marked obesity coupled with overeating, hyperglycemia, hyperinsulinemia, marked insulin resistance, and infertility when in a homozygous state. They may be inbred or hybrid. Hyperglycemic Mice,Obese Mice,Mouse, Hyperglycemic,Mouse, Obese,Hyperglycemic Mouse,Mice, Hyperglycemic,Obese Mouse
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D010275 Parasympathetic Nervous System The craniosacral division of the autonomic nervous system. The cell bodies of the parasympathetic preganglionic fibers are in brain stem nuclei and in the sacral spinal cord. They synapse in cranial autonomic ganglia or in terminal ganglia near target organs. The parasympathetic nervous system generally acts to conserve resources and restore homeostasis, often with effects reciprocal to the sympathetic nervous system. Nervous System, Parasympathetic,Nervous Systems, Parasympathetic,Parasympathetic Nervous Systems,System, Parasympathetic Nervous,Systems, Parasympathetic Nervous
D011558 Herpesvirus 1, Suid A species of VARICELLOVIRUS producing a respiratory infection (PSEUDORABIES) in swine, its natural host. It also produces an usually fatal ENCEPHALOMYELITIS in cattle, sheep, dogs, cats, foxes, and mink. Aujeszky's Disease Virus,Swine Herpesvirus 1,Aujeszky Disease Virus,Herpesvirus 1 (alpha), Suid,Herpesvirus Suis,Pseudorabies Virus,Suid Herpesvirus 1,Aujeszkys Disease Virus,Herpesvirus 1, Swine,Pseudorabies Viruses,Virus, Pseudorabies,Viruses, Pseudorabies
D002799 Cholinergic Fibers Nerve fibers liberating acetylcholine at the synapse after an impulse. Cholinergic Fiber,Fiber, Cholinergic,Fibers, Cholinergic
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
July 2007, American journal of physiology. Regulatory, integrative and comparative physiology,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
November 2002, The Journal of clinical investigation,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
July 2005, Current opinion in clinical nutrition and metabolic care,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
December 1987, The American journal of physiology,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
January 1983, Journal of neural transmission,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
March 1995, The American journal of physiology,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
October 2014, Frontiers in neuroendocrinology,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
March 2022, Open biology,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
July 1978, The Anatomical record,
Antonio Giordano, and C Kay Song, and Robert R Bowers, and J Christopher Ehlen, and Andrea Frontini, and Saverio Cinti, and Timothy J Bartness
May 2021, The Journal of comparative neurology,
Copied contents to your clipboard!