Changes in mechanical events and adenosine 3',5'-monophosphate levels induced by enantiomers of isoproterenol in isolated rat atria and uteri. 1975

J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner

Beta adrenergic receptors of rat atria and uteri were examined with the use of enantiomers of isoproterenol as agonists and mechanical responses and adenosine 3',5'-monophosphate (cyclic AMP) levels as measured effects. Assuming that stereoselectivity reflects the unique asymmetry of receptors, potency differences between the enantiomers are expected to provide a sensitive indication of ligand binding. All effects in each tissue were investigated under similar experimental conditions. Both isomers produced the same maximum effect on all measured responses. Enantiomeric potency differences (in log units) for positive chronotropic and inotropic responses and increases in cyclic AMP levels in atria were 3.31, 3.51 and 3.48, respectively. In uteri, the values for reduction of spontaneous contractile amplitude and increases in cyclic AMP were 2.90 and 2.79 log units, respectively. Even though these absolute values varied slightly with the experimental conditions, they were consistently smaller in uteri than in atria. In both tissues, dose-response curves for production of mechanical effects were greater than 2 log units to the left of those for increases in cyclic AMP levels. Regardless of the interpretation of this phenomenon, the results show the following. 1) The stereoselectivity for isoproterenol-induced effects is different between the two tissues at both levels of response. Therefore, it is suggested that this reflects dissimilar beta adrenergic receptor types in rat atrium vs. rat uterus. 2) The stereochemical selectivity for isoproterenol-induced mechanical effects and increases in cyclic AMP is the same in rat atrium and in rat uterus. Therefore, the data support the postulate that cyclic AMP is formed from interaction of isoproterenol with a receptor that is similar to the one activated to produce a mechanical effect.

UI MeSH Term Description Entries
D007545 Isoproterenol Isopropyl analog of EPINEPHRINE; beta-sympathomimetic that acts on the heart, bronchi, skeletal muscle, alimentary tract, etc. It is used mainly as bronchodilator and heart stimulant. Isoprenaline,Isopropylarterenol,4-(1-Hydroxy-2-((1-methylethyl)amino)ethyl)-1,2-benzenediol,Euspiran,Isadrin,Isadrine,Isopropyl Noradrenaline,Isopropylnoradrenaline,Isopropylnorepinephrine,Isoproterenol Hydrochloride,Isoproterenol Sulfate,Isuprel,Izadrin,Norisodrine,Novodrin,Hydrochloride, Isoproterenol,Noradrenaline, Isopropyl,Sulfate, Isoproterenol
D009130 Muscle, Smooth Unstriated and unstriped muscle, one of the muscles of the internal organs, blood vessels, hair follicles, etc. Contractile elements are elongated, usually spindle-shaped cells with centrally located nuclei. Smooth muscle fibers are bound together into sheets or bundles by reticular fibers and frequently elastic nets are also abundant. (From Stedman, 25th ed) Muscle, Involuntary,Smooth Muscle,Involuntary Muscle,Involuntary Muscles,Muscles, Involuntary,Muscles, Smooth,Smooth Muscles
D009200 Myocardial Contraction Contractile activity of the MYOCARDIUM. Heart Contractility,Inotropism, Cardiac,Cardiac Inotropism,Cardiac Inotropisms,Contractilities, Heart,Contractility, Heart,Contraction, Myocardial,Contractions, Myocardial,Heart Contractilities,Inotropisms, Cardiac,Myocardial Contractions
D009206 Myocardium The muscle tissue of the HEART. It is composed of striated, involuntary muscle cells (MYOCYTES, CARDIAC) connected to form the contractile pump to generate blood flow. Muscle, Cardiac,Muscle, Heart,Cardiac Muscle,Myocardia,Cardiac Muscles,Heart Muscle,Heart Muscles,Muscles, Cardiac,Muscles, Heart
D011941 Receptors, Adrenergic Cell-surface proteins that bind epinephrine and/or norepinephrine with high affinity and trigger intracellular changes. The two major classes of adrenergic receptors, alpha and beta, were originally discriminated based on their cellular actions but now are distinguished by their relative affinity for characteristic synthetic ligands. Adrenergic receptors may also be classified according to the subtypes of G-proteins with which they bind; this scheme does not respect the alpha-beta distinction. Adrenergic Receptors,Adrenoceptor,Adrenoceptors,Norepinephrine Receptor,Receptors, Epinephrine,Receptors, Norepinephrine,Adrenergic Receptor,Epinephrine Receptors,Norepinephrine Receptors,Receptor, Adrenergic,Receptor, Norepinephrine
D005260 Female Females
D006325 Heart Atria The chambers of the heart, to which the BLOOD returns from the circulation. Heart Atrium,Left Atrium,Right Atrium,Atria, Heart,Atrium, Heart,Atrium, Left,Atrium, Right
D006339 Heart Rate The number of times the HEART VENTRICLES contract per unit of time, usually per minute. Cardiac Rate,Chronotropism, Cardiac,Heart Rate Control,Heartbeat,Pulse Rate,Cardiac Chronotropy,Cardiac Chronotropism,Cardiac Rates,Chronotropy, Cardiac,Control, Heart Rate,Heart Rates,Heartbeats,Pulse Rates,Rate Control, Heart,Rate, Cardiac,Rate, Heart,Rate, Pulse
D000242 Cyclic AMP An adenine nucleotide containing one phosphate group which is esterified to both the 3'- and 5'-positions of the sugar moiety. It is a second messenger and a key intracellular regulator, functioning as a mediator of activity for a number of hormones, including epinephrine, glucagon, and ACTH. Adenosine Cyclic 3',5'-Monophosphate,Adenosine Cyclic 3,5 Monophosphate,Adenosine Cyclic Monophosphate,Adenosine Cyclic-3',5'-Monophosphate,Cyclic AMP, (R)-Isomer,Cyclic AMP, Disodium Salt,Cyclic AMP, Monoammonium Salt,Cyclic AMP, Monopotassium Salt,Cyclic AMP, Monosodium Salt,Cyclic AMP, Sodium Salt,3',5'-Monophosphate, Adenosine Cyclic,AMP, Cyclic,Adenosine Cyclic 3',5' Monophosphate,Cyclic 3',5'-Monophosphate, Adenosine,Cyclic Monophosphate, Adenosine,Cyclic-3',5'-Monophosphate, Adenosine,Monophosphate, Adenosine Cyclic
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
February 1978, European journal of pharmacology,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
September 1981, Circulation research,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
February 1978, European journal of pharmacology,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
May 1985, Acta endocrinologica,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
December 1983, Journal of helminthology,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
March 1977, The Journal of pharmacology and experimental therapeutics,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
June 1996, European journal of pharmacology,
J E Birnbaum, and P W Abel, and G L Amidon, and C K Buckner
October 1977, The Journal of biological chemistry,
Copied contents to your clipboard!