Cholinergic regulation of adrenal medullary blood flow. 1991

J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland 21205.

To determine the relative role of nicotinic and muscarinic mechanisms in splanchnic nerve stimulation (NS)-induced adrenal catecholamine secretion and medullary vasodilation, 12 pentobarbital-anesthetized dogs were subjected to three identical stimulations. The first NS was performed before drug administration and served as a control. The second NS was performed after administration of either the muscarinic antagonist, atropine 0.5 mg/kg (group 1), or the nicotinic antagonist, hexamethonium 20 mg/kg (group 2). The third NS was performed after administration of both drugs. NS in the absence of drug resulted in 4-fold and greater than 200-fold increases in medullary blood flow (Q, measured with radiolabeled microspheres) and catecholamine secretion (assayed by high-pressure liquid chromatography), respectively. Atropine, when administered alone (group 1), had no effect on these responses. Subsequent administration of hexamethonium to group 1 animals resulted in complete blockade of NS-induced changes in medullary Q and secretion. Hexamethonium alone (group 2) reduced the catecholamine response to NS by 95% but had no effect on the medullary Q response. Addition of atropine further attenuated the increase in catecholamine secretion induced by NS and completely blocked the medullary Q increase. These data suggest the presence of redundant mechanisms to increase medullary Q during NS. One mechanism likely involves neurally released acetylcholine-stimulating vascular muscarinic receptors, whereas the second requires either chromaffin cell degranulation or nicotinic ganglionic transmission.

UI MeSH Term Description Entries
D009638 Norepinephrine Precursor of epinephrine that is secreted by the ADRENAL MEDULLA and is a widespread central and autonomic neurotransmitter. Norepinephrine is the principal transmitter of most postganglionic sympathetic fibers, and of the diffuse projection system in the brain that arises from the LOCUS CERULEUS. It is also found in plants and is used pharmacologically as a sympathomimetic. Levarterenol,Levonorepinephrine,Noradrenaline,Arterenol,Levonor,Levophed,Levophed Bitartrate,Noradrenaline Bitartrate,Noradrénaline tartrate renaudin,Norepinephrin d-Tartrate (1:1),Norepinephrine Bitartrate,Norepinephrine Hydrochloride,Norepinephrine Hydrochloride, (+)-Isomer,Norepinephrine Hydrochloride, (+,-)-Isomer,Norepinephrine d-Tartrate (1:1),Norepinephrine l-Tartrate (1:1),Norepinephrine l-Tartrate (1:1), (+,-)-Isomer,Norepinephrine l-Tartrate (1:1), Monohydrate,Norepinephrine l-Tartrate (1:1), Monohydrate, (+)-Isomer,Norepinephrine l-Tartrate (1:2),Norepinephrine l-Tartrate, (+)-Isomer,Norepinephrine, (+)-Isomer,Norepinephrine, (+,-)-Isomer
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D011978 Receptors, Nicotinic One of the two major classes of cholinergic receptors. Nicotinic receptors were originally distinguished by their preference for NICOTINE over MUSCARINE. They are generally divided into muscle-type and neuronal-type (previously ganglionic) based on pharmacology, and subunit composition of the receptors. Nicotinic Acetylcholine Receptors,Nicotinic Receptors,Nicotinic Acetylcholine Receptor,Nicotinic Receptor,Acetylcholine Receptor, Nicotinic,Acetylcholine Receptors, Nicotinic,Receptor, Nicotinic,Receptor, Nicotinic Acetylcholine,Receptors, Nicotinic Acetylcholine
D001783 Blood Flow Velocity A value equal to the total volume flow divided by the cross-sectional area of the vascular bed. Blood Flow Velocities,Flow Velocities, Blood,Flow Velocity, Blood,Velocities, Blood Flow,Velocity, Blood Flow
D001794 Blood Pressure PRESSURE of the BLOOD on the ARTERIES and other BLOOD VESSELS. Systolic Pressure,Diastolic Pressure,Pulse Pressure,Pressure, Blood,Pressure, Diastolic,Pressure, Pulse,Pressure, Systolic,Pressures, Systolic
D004285 Dogs The domestic dog, Canis familiaris, comprising about 400 breeds, of the carnivore family CANIDAE. They are worldwide in distribution and live in association with people. (Walker's Mammals of the World, 5th ed, p1065) Canis familiaris,Dog
D004558 Electric Stimulation Use of electric potential or currents to elicit biological responses. Stimulation, Electric,Electrical Stimulation,Electric Stimulations,Electrical Stimulations,Stimulation, Electrical,Stimulations, Electric,Stimulations, Electrical
D004837 Epinephrine The active sympathomimetic hormone from the ADRENAL MEDULLA. It stimulates both the alpha- and beta- adrenergic systems, causes systemic VASOCONSTRICTION and gastrointestinal relaxation, stimulates the HEART, and dilates BRONCHI and cerebral vessels. It is used in ASTHMA and CARDIAC FAILURE and to delay absorption of local ANESTHETICS. Adrenaline,4-(1-Hydroxy-2-(methylamino)ethyl)-1,2-benzenediol,Adrenaline Acid Tartrate,Adrenaline Bitartrate,Adrenaline Hydrochloride,Epifrin,Epinephrine Acetate,Epinephrine Bitartrate,Epinephrine Hydrochloride,Epinephrine Hydrogen Tartrate,Epitrate,Lyophrin,Medihaler-Epi,Acetate, Epinephrine
D006584 Hexamethonium Compounds Compounds containing the hexamethylenebis(trimethylammonium) cation. Members of this group frequently act as antihypertensive agents and selective ganglionic blocking agents. Compounds, Hexamethonium
D000313 Adrenal Medulla The inner portion of the adrenal gland. Derived from ECTODERM, adrenal medulla consists mainly of CHROMAFFIN CELLS that produces and stores a number of NEUROTRANSMITTERS, mainly adrenaline (EPINEPHRINE) and NOREPINEPHRINE. The activity of the adrenal medulla is regulated by the SYMPATHETIC NERVOUS SYSTEM. Adrenal Medullas,Medulla, Adrenal,Medullas, Adrenal

Related Publications

J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
May 1992, The American journal of physiology,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
June 1986, The American journal of physiology,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
January 2001, Experimental nephrology,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
January 1995, Alzheimer disease and associated disorders,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
October 1998, Nihon yakurigaku zasshi. Folia pharmacologica Japonica,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
March 1987, The American journal of physiology,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
October 1975, Fiziologicheskii zhurnal SSSR imeni I. M. Sechenova,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
January 1946, Revue canadienne de biologie,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
January 1972, Comptes rendus des seances de la Societe de biologie et de ses filiales,
J G Kennedy, and M J Breslow, and J R Tobin, and R J Traystman
January 1990, Journal of neural transmission. Supplementum,
Copied contents to your clipboard!