Serotonin and nialamide differentially regulate survival and growth of cultured serotonin and catecholamine neurons. 1991

J P Liu, and J M Lauder
Department of Cell Biology and Anatomy, University of North Carolina School of Medicine, Chapel Hill 27599-7090.

In this morphometric analysis of immunoreactive serotonin (5-HT) and tyrosine hydroxylase (TH) neurons in culture, 5-HT and the MAO inhibitor nialamide influenced the survival, cell body size and neurite outgrowth of embryonic day 14 (E14) 5-HT neurons after treatment from 1-3 days in vitro (DIV), but did not significantly affect E14 or E15 TH neurons of either the noradrenergic or dopaminergic phenotype. These treatments had minimal effects on 5-HT neurons derived from E15 embryos. The stimulatory effects of 5-HT on survival and somal growth of E14 5-HT neurons was in contrast to its inhibitory effects on neurite outgrowth, suggesting trophic and inhibitory autoregulation of different cellular compartments of developing 5-HT neurons. The decreased sensitivity of E15 5-HT neurons to these treatments, despite similar viability and growth of these neurons in control cultures, suggests the existence of a critical period for this regulation during the initial period of serotonergic neurogenesis when these neurons are forming the bilateral B4-9 raphe complex. The lack of significant effects of 5-HT on TH neurons suggests differential sensitivities of 5-HT and TH neurons to developmental regulation by this neurotransmitter.

UI MeSH Term Description Entries
D009457 Neuroglia The non-neuronal cells of the nervous system. They not only provide physical support, but also respond to injury, regulate the ionic and chemical composition of the extracellular milieu, participate in the BLOOD-BRAIN BARRIER and BLOOD-RETINAL BARRIER, form the myelin insulation of nervous pathways, guide neuronal migration during development, and exchange metabolites with neurons. Neuroglia have high-affinity transmitter uptake systems, voltage-dependent and transmitter-gated ion channels, and can release transmitters, but their role in signaling (as in many other functions) is unclear. Bergmann Glia,Bergmann Glia Cells,Bergmann Glial Cells,Glia,Glia Cells,Satellite Glia,Satellite Glia Cells,Satellite Glial Cells,Glial Cells,Neuroglial Cells,Bergmann Glia Cell,Bergmann Glial Cell,Cell, Bergmann Glia,Cell, Bergmann Glial,Cell, Glia,Cell, Glial,Cell, Neuroglial,Cell, Satellite Glia,Cell, Satellite Glial,Glia Cell,Glia Cell, Bergmann,Glia Cell, Satellite,Glia, Bergmann,Glia, Satellite,Glial Cell,Glial Cell, Bergmann,Glial Cell, Satellite,Glias,Neuroglial Cell,Neuroglias,Satellite Glia Cell,Satellite Glial Cell,Satellite Glias
D009474 Neurons The basic cellular units of nervous tissue. Each neuron consists of a body, an axon, and dendrites. Their purpose is to receive, conduct, and transmit impulses in the NERVOUS SYSTEM. Nerve Cells,Cell, Nerve,Cells, Nerve,Nerve Cell,Neuron
D009526 Nialamide An MAO inhibitor that is used as an antidepressive agent.
D002395 Catecholamines A general class of ortho-dihydroxyphenylalkylamines derived from TYROSINE. Catecholamine,Sympathin,Sympathins
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002470 Cell Survival The span of viability of a cell characterized by the capacity to perform certain functions such as metabolism, growth, reproduction, some form of responsiveness, and adaptability. Cell Viability,Cell Viabilities,Survival, Cell,Viabilities, Cell,Viability, Cell
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D012701 Serotonin A biochemical messenger and regulator, synthesized from the essential amino acid L-TRYPTOPHAN. In humans it is found primarily in the central nervous system, gastrointestinal tract, and blood platelets. Serotonin mediates several important physiological functions including neurotransmission, gastrointestinal motility, hemostasis, and cardiovascular integrity. Multiple receptor families (RECEPTORS, SEROTONIN) explain the broad physiological actions and distribution of this biochemical mediator. 5-HT,5-Hydroxytryptamine,3-(2-Aminoethyl)-1H-indol-5-ol,Enteramine,Hippophaine,Hydroxytryptamine,5 Hydroxytryptamine
D014446 Tyrosine 3-Monooxygenase An enzyme that catalyzes the conversion of L-tyrosine, tetrahydrobiopterin, and oxygen to 3,4-dihydroxy-L-phenylalanine, dihydrobiopterin, and water. EC 1.14.16.2. Tyrosine Hydroxylase,3-Monooxygenase, Tyrosine,Hydroxylase, Tyrosine,Tyrosine 3 Monooxygenase

Related Publications

J P Liu, and J M Lauder
January 2002, The Journal of neuroscience : the official journal of the Society for Neuroscience,
J P Liu, and J M Lauder
January 1994, Proceedings of the National Academy of Sciences of the United States of America,
J P Liu, and J M Lauder
December 1986, Brain research bulletin,
J P Liu, and J M Lauder
September 2000, Brain research. Developmental brain research,
J P Liu, and J M Lauder
October 2011, Journal of molecular neuroscience : MN,
J P Liu, and J M Lauder
November 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience,
Copied contents to your clipboard!