Peptides for disruption of PKA anchoring. 2006

C Hundsrucker, and W Rosenthal, and E Klussmann
Leibniz-Institut für Molekulare Pharmakologie, Campus Berlin-Buch, Robert-Rössle-Strasse 10, D-13125 Berlin, Germany.

Adaptor or scaffolding proteins are at the basis of multiprotein complexes that spatially and temporally co-ordinate the propagation and integration of a broad range of cellular events. One class of scaffolding proteins are AKAPs (A-kinase-anchoring proteins). They sequester PKA (protein kinase A) and other signalling molecules including phosphodiesterases, other protein kinases and protein phosphatases to specific subcellular compartments. AKAP-dependent protein-protein interactions play a role in many physiologically relevant processes. For example, AKAP-PKA interactions are essential for the vasopressin-mediated water re-absorption in renal collecting duct principal cells or beta-adrenoceptor-induced increases in cardiac myocyte contractility. Here, we discuss recently developed peptide disruptors of AKAP-PKA interactions. Such peptides are valuable tools to study the relevance of PKA anchoring in cellular processes.

UI MeSH Term Description Entries
D010455 Peptides Members of the class of compounds composed of AMINO ACIDS joined together by peptide bonds between adjacent amino acids into linear, branched or cyclical structures. OLIGOPEPTIDES are composed of approximately 2-12 amino acids. Polypeptides are composed of approximately 13 or more amino acids. PROTEINS are considered to be larger versions of peptides that can form into complex structures such as ENZYMES and RECEPTORS. Peptide,Polypeptide,Polypeptides
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D048868 Adaptor Proteins, Signal Transducing A broad category of carrier proteins that play a role in SIGNAL TRANSDUCTION. They generally contain several modular domains, each of which having its own binding activity, and act by forming complexes with other intracellular-signaling molecules. Signal-transducing adaptor proteins lack enzyme activity, however their activity can be modulated by other signal-transducing enzymes Signal Transducing Adaptor Proteins
D017868 Cyclic AMP-Dependent Protein Kinases A group of enzymes that are dependent on CYCLIC AMP and catalyze the phosphorylation of SERINE or THREONINE residues on proteins. Included under this category are two cyclic-AMP-dependent protein kinase subtypes, each of which is defined by its subunit composition. Adenosine Cyclic Monophosphate-Dependent Protein Kinases,Protein Kinase A,cAMP Protein Kinase,cAMP-Dependent Protein Kinases,Cyclic AMP-Dependent Protein Kinase,cAMP-Dependent Protein Kinase,Adenosine Cyclic Monophosphate Dependent Protein Kinases,Cyclic AMP Dependent Protein Kinase,Cyclic AMP Dependent Protein Kinases,Protein Kinase, cAMP,Protein Kinase, cAMP-Dependent,Protein Kinases, cAMP-Dependent,cAMP Dependent Protein Kinase,cAMP Dependent Protein Kinases
D019295 Computational Biology A field of biology concerned with the development of techniques for the collection and manipulation of biological data, and the use of such data to make biological discoveries or predictions. This field encompasses all computational methods and theories for solving biological problems including manipulation of models and datasets. Bioinformatics,Molecular Biology, Computational,Bio-Informatics,Biology, Computational,Computational Molecular Biology,Bio Informatics,Bio-Informatic,Bioinformatic,Biologies, Computational Molecular,Biology, Computational Molecular,Computational Molecular Biologies,Molecular Biologies, Computational
D021122 Protein Subunits Single chains of amino acids that are the units of multimeric PROTEINS. Multimeric proteins can be composed of identical or non-identical subunits. One or more monomeric subunits may compose a protomer which itself is a subunit structure of a larger assembly. Protomers,Protein Subunit,Protomer,Subunit, Protein,Subunits, Protein

Related Publications

C Hundsrucker, and W Rosenthal, and E Klussmann
March 2014, ACS chemical biology,
C Hundsrucker, and W Rosenthal, and E Klussmann
February 2009, American journal of physiology. Cell physiology,
C Hundsrucker, and W Rosenthal, and E Klussmann
August 2002, The Journal of cell biology,
C Hundsrucker, and W Rosenthal, and E Klussmann
April 2001, The EMBO journal,
C Hundsrucker, and W Rosenthal, and E Klussmann
January 2000, Advances in pharmacology (San Diego, Calif.),
C Hundsrucker, and W Rosenthal, and E Klussmann
July 2016, Proceedings of the National Academy of Sciences of the United States of America,
C Hundsrucker, and W Rosenthal, and E Klussmann
February 2006, Current biology : CB,
C Hundsrucker, and W Rosenthal, and E Klussmann
January 2006, Bioorganic & medicinal chemistry letters,
C Hundsrucker, and W Rosenthal, and E Klussmann
July 2008, Neurobiology of learning and memory,
Copied contents to your clipboard!