Vertebrate homeobox genes. 1991

C V Wright
Vanderbilt University, Nashville, Tennessee.

Recent highlights in vertebrate homeobox gene research include the discovery of new genes with novel expression patterns, observations that peptide growth factors and retinoic acid influence homeobox gene expression, and the generation of mutant phenotypes of embryos homozygous for null mutations. These combined studies reinforce the idea that homeobox genes function near the top of the gene hierarchies controlling vertebrate embryogenesis.

UI MeSH Term Description Entries
D009024 Morphogenesis The development of anatomical structures to create the form of a single- or multi-cell organism. Morphogenesis provides form changes of a part, parts, or the whole organism.
D005801 Genes, Homeobox Genes that encode highly conserved TRANSCRIPTION FACTORS that control positional identity of cells (BODY PATTERNING) and MORPHOGENESIS throughout development. Their sequences contain a 180 nucleotide sequence designated the homeobox, so called because mutations of these genes often results in homeotic transformations, in which one body structure replaces another. The proteins encoded by homeobox genes are called HOMEODOMAIN PROTEINS. Genes, Homeotic,Homeobox Sequence,Homeotic Genes,Genes, Homeo Box,Homeo Box,Homeo Box Sequence,Homeo Boxes,Homeobox,Homeoboxes,Hox Genes,Sequence, Homeo Box,Gene, Homeo Box,Gene, Homeobox,Gene, Homeotic,Gene, Hox,Genes, Hox,Homeo Box Gene,Homeo Box Genes,Homeo Box Sequences,Homeobox Gene,Homeobox Genes,Homeobox Sequences,Homeotic Gene,Hox Gene,Sequence, Homeobox,Sequences, Homeo Box,Sequences, Homeobox
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014714 Vertebrates Animals having a vertebral column, members of the phylum Chordata, subphylum Craniata comprising mammals, birds, reptiles, amphibians, and fishes. Vertebrate
D015870 Gene Expression The phenotypic manifestation of a gene or genes by the processes of GENETIC TRANSCRIPTION and GENETIC TRANSLATION. Expression, Gene,Expressions, Gene,Gene Expressions

Related Publications

C V Wright
January 1994, Genetica,
C V Wright
March 1996, Mechanisms of development,
C V Wright
April 1992, BioEssays : news and reviews in molecular, cellular and developmental biology,
C V Wright
October 1995, Current opinion in genetics & development,
C V Wright
June 1994, Investigative ophthalmology & visual science,
C V Wright
January 1988, Development (Cambridge, England),
C V Wright
April 1992, BioEssays : news and reviews in molecular, cellular and developmental biology,
C V Wright
March 1993, European journal of biochemistry,
C V Wright
April 1993, Nucleic acids research,
C V Wright
January 1989, BioEssays : news and reviews in molecular, cellular and developmental biology,
Copied contents to your clipboard!