Time-, concentration-, and age-dependent inhibition of muscarinic receptor-stimulated phosphoinositide metabolism by ethanol in the developing rat brain. 1991

W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
Department of Environmental Health, University of Washington, Seattle.

We have previously reported that administration of ethanol (EtOH; 4 g/Kg/day) to rats from postnatal day 4 to day 10 causes microencephaly and decreases muscarinic receptor-stimulated inositol metabolism on days 7 and 10. An identical exposure to EtOH of adult rats, which resulted in similar blood EtOH concentrations, did not have any effect on the same system. Initial in vitro studies have shown the presence of a differential sensitivity to EtOH of the phosphoinositide system coupled to muscarinic receptors during development. In the present study we have expanded these findings by investigating the concentration-, time-, and age-dependent effects of EtOH on accumulation of [3H]inositol phosphates ([3H]InsPs) in brain slices. EtOH caused a dose-dependent inhibition of carbachol-stimulated phosphoinositide metabolism in cerebral cortex slices from 7 day-old rats. When the time of incubation with EtOH was increased to 90 minutes, concentrations as low as 50 mM, which are reached following in vivo administration of EtOH, significantly inhibited the muscarinic response. The effect of EtOH was rather specific for the muscarinic receptors, since, even with longer incubation times, the accumulation of [3H]InsPs induced by norepinephrine or serotonin was inhibited only at concentrations of 150-500 mM. The effect of EtOH was more pronounced in cerebral cortex, hippocampus and cerebellum, and less in the brainstem. The potency of EtOH in inhibiting carbachol-stimulated phosphoinositide metabolism was also dependent on the age of the animals. Its effect was maximal in the 7-day-old rat and less pronounced in younger and older animals.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D008297 Male Males
D010716 Phosphatidylinositols Derivatives of phosphatidic acids in which the phosphoric acid is bound in ester linkage to the hexahydroxy alcohol, myo-inositol. Complete hydrolysis yields 1 mole of glycerol, phosphoric acid, myo-inositol, and 2 moles of fatty acids. Inositide Phospholipid,Inositol Phosphoglyceride,Inositol Phosphoglycerides,Inositol Phospholipid,Phosphoinositide,Phosphoinositides,PtdIns,Inositide Phospholipids,Inositol Phospholipids,Phosphatidyl Inositol,Phosphatidylinositol,Inositol, Phosphatidyl,Phosphoglyceride, Inositol,Phosphoglycerides, Inositol,Phospholipid, Inositide,Phospholipid, Inositol,Phospholipids, Inositide,Phospholipids, Inositol
D011919 Rats, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations or by parent x offspring matings carried out with certain restrictions. This also includes animals with a long history of closed colony breeding. August Rats,Inbred Rat Strains,Inbred Strain of Rat,Inbred Strain of Rats,Inbred Strains of Rats,Rat, Inbred Strain,August Rat,Inbred Rat Strain,Inbred Strain Rat,Inbred Strain Rats,Inbred Strains Rat,Inbred Strains Rats,Rat Inbred Strain,Rat Inbred Strains,Rat Strain, Inbred,Rat Strains, Inbred,Rat, August,Rat, Inbred Strains,Rats Inbred Strain,Rats Inbred Strains,Rats, August,Rats, Inbred Strain,Strain Rat, Inbred,Strain Rats, Inbred,Strain, Inbred Rat,Strains, Inbred Rat
D011976 Receptors, Muscarinic One of the two major classes of cholinergic receptors. Muscarinic receptors were originally defined by their preference for MUSCARINE over NICOTINE. There are several subtypes (usually M1, M2, M3....) that are characterized by their cellular actions, pharmacology, and molecular biology. Muscarinic Acetylcholine Receptors,Muscarinic Receptors,Muscarinic Acetylcholine Receptor,Muscarinic Receptor,Acetylcholine Receptor, Muscarinic,Acetylcholine Receptors, Muscarinic,Receptor, Muscarinic,Receptor, Muscarinic Acetylcholine,Receptors, Muscarinic Acetylcholine
D001921 Brain The part of CENTRAL NERVOUS SYSTEM that is contained within the skull (CRANIUM). Arising from the NEURAL TUBE, the embryonic brain is comprised of three major parts including PROSENCEPHALON (the forebrain); MESENCEPHALON (the midbrain); and RHOMBENCEPHALON (the hindbrain). The developed brain consists of CEREBRUM; CEREBELLUM; and other structures in the BRAIN STEM. Encephalon
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D000375 Aging The gradual irreversible changes in structure and function of an organism that occur as a result of the passage of time. Senescence,Aging, Biological,Biological Aging
D000431 Ethanol A clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in ALCOHOLIC BEVERAGES. Alcohol, Ethyl,Absolute Alcohol,Grain Alcohol,Alcohol, Absolute,Alcohol, Grain,Ethyl Alcohol
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia

Related Publications

W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
May 1994, Brain research. Developmental brain research,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
August 1989, The Journal of pharmacology and experimental therapeutics,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
May 1987, The Journal of pharmacology and experimental therapeutics,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
January 1995, Life sciences,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
August 1995, Neurochemical research,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
June 1993, Neuroscience letters,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
January 1992, Neurotoxicology,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
January 1990, Neurochemistry international,
W Balduini, and S M Candura, and L Manzo, and F Cattabeni, and L G Costa
May 1990, The Journal of pharmacology and experimental therapeutics,
Copied contents to your clipboard!