Dynamic change and derivation process of FC and DFC through G1, S and G2 phases in HeLa cells. 2006

Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
Institute of Genetics and Cytology, Northeast Normal University, Changchun, China.

In order to get a deeper understanding of the relationship between nucleolus structure and its function, the dynamic change and derivation of FC (fibrillar center) and DFC (dense fibrillar component) through interphase were investigated in HeLa cells synchronized at the ultrastructural level. The results showed that there was a process of FC and DFC derivation in the nucleolus of HeLa cells during interphase. In G1 phase there were a few big FCs in the nucleolus of the HeLa cell. In S phase DFC around the FC got thickened and the configuration of the DFC changed. A lot of tiny FCs were derived from parts of the thickened DFC. We called the FC and DFC formed in G1 phase as primary FC (pri-FC) and primary DFC (pri-DFC) and the FC and DFC derived from the thickened pri-DFC as secondary FC (sec-FC) and secondary DFC (sec-DFC). In G2 phase sec-FC and sec-DFC were gradually separated from pri-DFC and scattered evenly in the nucleolus. Few large pri-FCs coexisted with numerous tiny sec-FCs in the nucleolus of HeLa cells in G2 phase. Based on the results of our observation, we suggest here a model of the dynamic change and the process of derivation of FC and DFC through interphase.

UI MeSH Term Description Entries
D007399 Interphase The interval between two successive CELL DIVISIONS during which the CHROMOSOMES are not individually distinguishable. It is composed of the G phases (G1 PHASE; G0 PHASE; G2 PHASE) and S PHASE (when DNA replication occurs). Interphases
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D009697 Nucleolus Organizer Region The chromosome region which is active in nucleolus formation and which functions in the synthesis of ribosomal RNA. Nucleolar Organizer,Nucleolar Organizers,Nucleolus Organizer Regions,Organizer Region, Nucleolus,Organizer Regions, Nucleolus,Organizer, Nucleolar,Organizers, Nucleolar,Region, Nucleolus Organizer,Regions, Nucleolus Organizer
D002453 Cell Cycle The complex series of phenomena, occurring between the end of one CELL DIVISION and the end of the next, by which cellular material is duplicated and then divided between two daughter cells. The cell cycle includes INTERPHASE, which includes G0 PHASE; G1 PHASE; S PHASE; and G2 PHASE, and CELL DIVISION PHASE. Cell Division Cycle,Cell Cycles,Cell Division Cycles,Cycle, Cell,Cycle, Cell Division,Cycles, Cell,Cycles, Cell Division,Division Cycle, Cell,Division Cycles, Cell
D002467 Cell Nucleus Within a eukaryotic cell, a membrane-limited body which contains chromosomes and one or more nucleoli (CELL NUCLEOLUS). The nuclear membrane consists of a double unit-type membrane which is perforated by a number of pores; the outermost membrane is continuous with the ENDOPLASMIC RETICULUM. A cell may contain more than one nucleus. (From Singleton & Sainsbury, Dictionary of Microbiology and Molecular Biology, 2d ed) Cell Nuclei,Nuclei, Cell,Nucleus, Cell
D002843 Chromatin The material of CHROMOSOMES. It is a complex of DNA; HISTONES; and nonhistone proteins (CHROMOSOMAL PROTEINS, NON-HISTONE) found within the nucleus of a cell. Chromatins
D006367 HeLa Cells The first continuously cultured human malignant CELL LINE, derived from the cervical carcinoma of Henrietta Lacks. These cells are used for, among other things, VIRUS CULTIVATION and PRECLINICAL DRUG EVALUATION assays. Cell, HeLa,Cells, HeLa,HeLa Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D016193 G1 Phase The period of the CELL CYCLE preceding DNA REPLICATION in S PHASE. Subphases of G1 include "competence" (to respond to growth factors), G1a (entry into G1), G1b (progression), and G1c (assembly). Progression through the G1 subphases is effected by limiting growth factors, nutrients, or inhibitors. First Gap Phase,G1a Phase,G1b Phase,Gap Phase 1,First Gap Phases,G1 Phases,G1a Phases,G1b Phases,Gap Phase, First,Gap Phases, First,Phase 1, Gap,Phase, First Gap,Phase, G1,Phase, G1a,Phase, G1b,Phases, First Gap,Phases, G1,Phases, G1a,Phases, G1b
D016195 G2 Phase The period of the CELL CYCLE following DNA synthesis (S PHASE) and preceding M PHASE (cell division phase). The CHROMOSOMES are tetraploid in this point. Gap Phase 2,Second Gap Phase,G2 Phases,Gap Phase, Second,Gap Phases, Second,Phase 2, Gap,Phase, G2,Phase, Second Gap,Phases, G2,Phases, Second Gap,Second Gap Phases

Related Publications

Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
January 2022, Methods in molecular biology (Clifton, N.J.),
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
March 2002, Oncogene,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
February 1994, Biological & pharmaceutical bulletin,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
January 2022, Methods in molecular biology (Clifton, N.J.),
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
June 2012, Aging,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
August 2000, Cytometry,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
April 1982, Canadian journal of biochemistry,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
December 1978, Revista brasileira de pesquisas medicas e biologicas,
Fengcai Wang, and Guangbin Shang, and Shui Hao, and Mingda Jiao
January 2005, Methods in molecular biology (Clifton, N.J.),
Copied contents to your clipboard!