Lactate transport and glycolytic activity in the freshly isolated rabbit cornea. 1990

C H Chen, and S C Chen
Biochemistry Laboratory, Wilmer Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.

Studies on the intact avascular cornea reveal two types of lactate effluxes: exogenous glucose-elicited and spontaneous. The former type exhibits characteristics resembling the proton-lactate symport system previously found in tumor cells and erythrocytes, including an enhanced lactate efflux at a higher extracellular pH and in the presence of H+ and K+ ionophores, and an inhibition by mersalyl with subsequent lactate accumulation in the tissue and cessation of glycolytic activity. The latter type occurs immediately following the incubation of freshly isolated cornea in a medium containing no exogenous glucose, with a rate about 10 times that of exogenous glucose-elicited lactate efflux. It is insensitive to 10 mM iodoacetate and lacks the characteristics of the proton-lactate symport system. Findings reveal that about 50% of corneal glucose utilization occurs in the epithelium, with the stroma and endothelium sharing the other 50% approximately equally. Of the glucose utilized, the lactate formation to pyruvate oxidation rate ratios are approximately 1:1 in the epithelium, 2:1 in the stroma, and 1:2 in the endothelium. About 79% of total tissue lactate is formed in the epithelium and stroma, and in vivo, this is probably pumped into the stromal extracellular space (about 90% of total tissue volume) via the proton-lactate symport system, with spontaneous release into the aqueous humor via a simple diffusion process. The H+ and K+ ionophores facilitate lactate efflux at the expense of the cellular pyruvate pool, without significant effect on the glucose uptake and glycolytic activity. These findings suggest that the ionophore-mediated lactate efflux favors the reduction of low pyruvate concentration in the tissue, rather than parallel increases in glycolytic activity.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D007773 Lactates Salts or esters of LACTIC ACID containing the general formula CH3CHOHCOOR.
D008297 Male Males
D008634 Mersalyl A toxic thiol mercury salt formerly used as a diuretic. It inhibits various biochemical functions, especially in mitochondria, and is used to study those functions. Mercuramide,Mercusal,Mersalin,Mersalyl Acid,Salyrgan,Acid, Mersalyl
D008757 Methylglucosides Methylglucopyranosides
D009550 Nigericin A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. (From Merck Index, 11th ed) Epinigericin,Pandavir
D011773 Pyruvates Derivatives of PYRUVIC ACID, including its salts and esters.
D011817 Rabbits A burrowing plant-eating mammal with hind limbs that are longer than its fore limbs. It belongs to the family Leporidae of the order Lagomorpha, and in contrast to hares, possesses 22 instead of 24 pairs of chromosomes. Belgian Hare,New Zealand Rabbit,New Zealand Rabbits,New Zealand White Rabbit,Rabbit,Rabbit, Domestic,Chinchilla Rabbits,NZW Rabbits,New Zealand White Rabbits,Oryctolagus cuniculus,Chinchilla Rabbit,Domestic Rabbit,Domestic Rabbits,Hare, Belgian,NZW Rabbit,Rabbit, Chinchilla,Rabbit, NZW,Rabbit, New Zealand,Rabbits, Chinchilla,Rabbits, Domestic,Rabbits, NZW,Rabbits, New Zealand,Zealand Rabbit, New,Zealand Rabbits, New,cuniculus, Oryctolagus
D002259 Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone A proton ionophore that is commonly used as an uncoupling agent in biochemical studies. Carbonyl Cyanide para-Trifluoromethoxyphenylhydrazone,FCCP,(4-(Trifluoromethoxy)phenyl)hydrazonopropanedinitrile,Carbonyl Cyanide p Trifluoromethoxyphenylhydrazone,Carbonyl Cyanide para Trifluoromethoxyphenylhydrazone,Cyanide p-Trifluoromethoxyphenylhydrazone, Carbonyl,Cyanide para-Trifluoromethoxyphenylhydrazone, Carbonyl,p-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide,para-Trifluoromethoxyphenylhydrazone, Carbonyl Cyanide
D003315 Cornea The transparent anterior portion of the fibrous coat of the eye consisting of five layers: stratified squamous CORNEAL EPITHELIUM; BOWMAN MEMBRANE; CORNEAL STROMA; DESCEMET MEMBRANE; and mesenchymal CORNEAL ENDOTHELIUM. It serves as the first refracting medium of the eye. It is structurally continuous with the SCLERA, avascular, receiving its nourishment by permeation through spaces between the lamellae, and is innervated by the ophthalmic division of the TRIGEMINAL NERVE via the ciliary nerves and those of the surrounding conjunctiva which together form plexuses. (Cline et al., Dictionary of Visual Science, 4th ed) Corneas

Related Publications

C H Chen, and S C Chen
January 1966, Experimental eye research,
C H Chen, and S C Chen
December 1965, The American journal of physiology,
C H Chen, and S C Chen
February 1994, Investigative ophthalmology & visual science,
C H Chen, and S C Chen
April 1974, Investigative ophthalmology,
C H Chen, and S C Chen
January 1975, Experimental eye research,
C H Chen, and S C Chen
February 1951, A.M.A. archives of ophthalmology,
C H Chen, and S C Chen
July 2010, International journal of pharmaceutics,
C H Chen, and S C Chen
January 1998, The American journal of physiology,
C H Chen, and S C Chen
January 1983, Graefe's archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv fur klinische und experimentelle Ophthalmologie,
Copied contents to your clipboard!