The presence of gonadotropin receptors in nonpregnant human uterus, human placenta, fetal membranes, and decidua. 1990

E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
Department of Obstetrics and Gynecology, University of Louisville, School of Medicine, Kentucky 40292.

The possible presence of gonadotropin receptors in nonpregnant human uterus and human fetoplacental unit was investigated by light microscope immunocytochemistry using a monoclonal antibody to rat luteal hCG/LH receptors. The receptor antibody cross-reacted with human and bovine hCG/LH receptors and appears to be directed against the receptor rather than other proteins, including HLA class I antigens. Uterus and fetoplacental unit contained receptor antibody-binding sites, which indicates the presence of hCG/LH receptors. In the endometrium these receptors were present in glandular and luminal epithelial cells as well as in stromal cells. In the myometrium the receptors were detected in circular and elongated myometrial smooth muscle and vascular smooth muscle. Comparison of immunostaining intensities, which indicates the presence of different amounts of receptors, revealed that luminal and glandular epithelial cells contained more receptors than stromal cells. These cells, in turn, contained more receptors than myometrial and vascular smooth muscle. All cells in secretory phase uterine specimens contained more receptors than corresponding cells from the proliferative phase of the cycle. Midpregnancy placenta, amniotic epithelium, chorionic cytotrophoblasts, and decidual cells contained hCG/LH receptors. At term pregnancy, while receptors in fetal membranes and decidua continue to be detected, placental tissues did not show any detectable receptors unless the tissues were pretreated with neuraminidase. This indicated that term pregnancy placenta contain hCG/LH receptors masked by sialic acid residues. Comparison of immunostaining intensities suggested that syncytiotrophoblasts contained more receptors than cytotrophoblasts at midpregnancy; mesenchymal cells or blood vessels contained no detectable receptors. There were more receptors in decidua than in fetal membranes at mid- and term pregnancy. While the amniotic epithelial receptors decreased, the receptors in chorionic cytotrophoblasts and decidual cells increased from mid- to term pregnancy. In summary, hCG/LH receptors were demonstrated in the nonpregnant human uterus, human placenta, fetal membranes, and decidua. This indicates that hCG/LH may directly regulate functions of these tissues by endocrine, autocrine, or paracrine mechanisms.

UI MeSH Term Description Entries
D007150 Immunohistochemistry Histochemical localization of immunoreactive substances using labeled antibodies as reagents. Immunocytochemistry,Immunogold Techniques,Immunogold-Silver Techniques,Immunohistocytochemistry,Immunolabeling Techniques,Immunogold Technics,Immunogold-Silver Technics,Immunolabeling Technics,Immunogold Silver Technics,Immunogold Silver Techniques,Immunogold Technic,Immunogold Technique,Immunogold-Silver Technic,Immunogold-Silver Technique,Immunolabeling Technic,Immunolabeling Technique,Technic, Immunogold,Technic, Immunogold-Silver,Technic, Immunolabeling,Technics, Immunogold,Technics, Immunogold-Silver,Technics, Immunolabeling,Technique, Immunogold,Technique, Immunogold-Silver,Technique, Immunolabeling,Techniques, Immunogold,Techniques, Immunogold-Silver,Techniques, Immunolabeling
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D010920 Placenta A highly vascularized mammalian fetal-maternal organ and major site of transport of oxygen, nutrients, and fetal waste products. It includes a fetal portion (CHORIONIC VILLI) derived from TROPHOBLASTS and a maternal portion (DECIDUA) derived from the uterine ENDOMETRIUM. The placenta produces an array of steroid, protein and peptide hormones (PLACENTAL HORMONES). Placentoma, Normal,Placentome,Placentas,Placentomes
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D011967 Receptors, Gonadotropin Those protein complexes or molecular sites on the surfaces of gonadal and other sensitive cells that bind gonadotropins and thereby modify the functions of those cells; hCG, LH, and FOLLICLE STIMULATING HORMONE are the major specific gonadotropins. Gonadotropin Receptors,Menotropin Receptors,Pituitary Gonadotropin Receptors,Receptors, Menotropin,Gonadotopin Receptor,Pituitary Gonadotropin Receptor,Receptors, Gonadotropins,Receptors, Pituitary Gonadotropin,Gonadotropin Receptor, Pituitary,Gonadotropin Receptors, Pituitary,Gonadotropins Receptors,Receptor, Gonadotopin,Receptor, Pituitary Gonadotropin
D003656 Decidua The hormone-responsive glandular layer of ENDOMETRIUM that sloughs off at each menstrual flow (decidua menstrualis) or at the termination of pregnancy. During pregnancy, the thickest part of the decidua forms the maternal portion of the PLACENTA, thus named decidua placentalis. The thin portion of the decidua covering the rest of the embryo is the decidua capsularis. Deciduum,Deciduas
D005260 Female Females
D005321 Extraembryonic Membranes The thin layers of tissue that surround the developing embryo. There are four extra-embryonic membranes commonly found in VERTEBRATES, such as REPTILES; BIRDS; and MAMMALS. They are the YOLK SAC, the ALLANTOIS, the AMNION, and the CHORION. These membranes provide protection and means to transport nutrients and wastes. Fetal Membranes,Extra-Embryonic Membranes,Extra Embryonic Membranes,Extra-Embryonic Membrane,Extraembryonic Membrane,Fetal Membrane,Membrane, Extra-Embryonic,Membrane, Extraembryonic,Membrane, Fetal,Membranes, Extra-Embryonic,Membranes, Extraembryonic,Membranes, Fetal
D006063 Chorionic Gonadotropin A gonadotropic glycoprotein hormone produced primarily by the PLACENTA. Similar to the pituitary LUTEINIZING HORMONE in structure and function, chorionic gonadotropin is involved in maintaining the CORPUS LUTEUM during pregnancy. CG consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is virtually identical to the alpha subunits of the three pituitary glycoprotein hormones (TSH, LH, and FSH), but the beta subunit is unique and confers its biological specificity (CHORIONIC GONADOTROPIN, BETA SUBUNIT, HUMAN). Chorionic Gonadotropin, Human,HCG (Human Chorionic Gonadotropin),Biogonadil,Choriogonadotropin,Choriogonin,Chorulon,Gonabion,Human Chorionic Gonadotropin,Pregnyl,Gonadotropin, Chorionic,Gonadotropin, Human Chorionic
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
January 1996, The Journal of clinical endocrinology and metabolism,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
October 1982, Journal of steroid biochemistry,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
May 1990, Akusherstvo i ginekologiia,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
January 1992, Agents and actions. Supplements,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
December 1998, Human reproduction (Oxford, England),
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
October 1982, Prostaglandins,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
March 1995, Placenta,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
January 1985, The Journal of clinical endocrinology and metabolism,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
September 1988, The Journal of endocrinology,
E Reshef, and Z M Lei, and C V Rao, and D D Pridham, and N Chegini, and J L Luborsky
January 1996, Placenta,
Copied contents to your clipboard!