Functional role of spliced cytoplasmic tails in P2X2-receptor-mediated cellular signaling. 2006

Taka-aki Koshimizu, and Gozoh Tsujimoto
Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Japan.

P2X receptors belong to a unique family of ligand-gated channels in terms of their molecular architecture, in which the channel subunit has two transmembrane alpha-helixes with a large extracellular loop keeping amino- and carboxy-termini in the cytoplasm. Post-transcriptional modifications of P2X receptors could diversify cellular responsiveness induced by extracellular ATP in anterior pituitary cells and other cell types. Recently, we found a spliced variant P2X2 transcript, termed P2X2e, in mouse pituitary. The P2X2e has a shorter cytoplasmic carboxy-terminal tail than those of full-length P2X2a or splice variant P2X2b subunits. Although ATP induced rapid responses in all homomeric P2X2 channels, the current induced by P2X2e declined significantly faster than those by P2X2a or P2X2b. In this article, we summarize functional alterations of P2X2 receptors after splicing reactions. Combinations of different P2X2 subunit carboxy-termini to form homomeric and heteromeric channels could be a molecular mechanism for promoting functional diversities of ATP-induced cellular signals.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D012689 Sequence Homology, Nucleic Acid The sequential correspondence of nucleotides in one nucleic acid molecule with those of another nucleic acid molecule. Sequence homology is an indication of the genetic relatedness of different organisms and gene function. Base Sequence Homology,Homologous Sequences, Nucleic Acid,Homologs, Nucleic Acid Sequence,Homology, Base Sequence,Homology, Nucleic Acid Sequence,Nucleic Acid Sequence Homologs,Nucleic Acid Sequence Homology,Sequence Homology, Base,Base Sequence Homologies,Homologies, Base Sequence,Sequence Homologies, Base
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D017398 Alternative Splicing A process whereby multiple RNA transcripts are generated from a single gene. Alternative splicing involves the splicing together of other possible sets of EXONS during the processing of some, but not all, transcripts of the gene. Thus a particular exon may be connected to any one of several alternative exons to form a mature RNA. The alternative forms of mature MESSENGER RNA produce PROTEIN ISOFORMS in which one part of the isoforms is common while the other parts are different. RNA Splicing, Alternative,Splicing, Alternative,Alternate Splicing,Nested Transcripts,Alternate Splicings,Alternative RNA Splicing,Alternative RNA Splicings,Alternative Splicings,Nested Transcript,RNA Splicings, Alternative,Splicing, Alternate,Splicing, Alternative RNA,Splicings, Alternate,Splicings, Alternative,Splicings, Alternative RNA,Transcript, Nested,Transcripts, Nested
D058476 Receptors, Purinergic P2X2 A purinergic P2X neurotransmitter receptor involved in sensory signaling of TASTE PERCEPTION, chemoreception, visceral distension and NEUROPATHIC PAIN. The receptor comprises three P2X2 subunits. The P2X2 subunits also have been found associated with P2X3 RECEPTOR subunits in a heterotrimeric receptor variant. P2X2 Purinoceptor,P2X2 Purinoceptors,P2X2 Receptor,Purinergic Receptor P2X, Ligand-Gated Ion Channel, 2,P2X2 Receptors, Purinergic,Purinergic P2X2 Receptors,Purinoceptor, P2X2,Purinoceptors, P2X2,Receptor, P2X2
D018048 Receptors, Purinergic P2 A class of cell surface receptors for PURINES that prefer ATP or ADP over ADENOSINE. P2 purinergic receptors are widespread in the periphery and in the central and peripheral nervous system. ADP Receptors,ATP Receptors,P2 Purinoceptors,Purinergic P2 Receptors,Receptors, ADP,Receptors, ATP,ADP Receptor,ATP Receptor,P2 Purinoceptor,Receptor, Purinergic P2,P2 Receptor, Purinergic,P2 Receptors, Purinergic,Purinergic P2 Receptor,Purinoceptor, P2,Purinoceptors, P2,Receptor, ADP,Receptor, ATP

Related Publications

Taka-aki Koshimizu, and Gozoh Tsujimoto
October 1992, Transplantation proceedings,
Taka-aki Koshimizu, and Gozoh Tsujimoto
January 1998, Cell adhesion and communication,
Taka-aki Koshimizu, and Gozoh Tsujimoto
July 1998, Molecular endocrinology (Baltimore, Md.),
Taka-aki Koshimizu, and Gozoh Tsujimoto
January 2000, Biochemistry and cell biology = Biochimie et biologie cellulaire,
Taka-aki Koshimizu, and Gozoh Tsujimoto
April 2018, Annual review of plant biology,
Taka-aki Koshimizu, and Gozoh Tsujimoto
April 1994, The Journal of biological chemistry,
Taka-aki Koshimizu, and Gozoh Tsujimoto
January 2014, Frontiers in behavioral neuroscience,
Taka-aki Koshimizu, and Gozoh Tsujimoto
May 2015, American journal of physiology. Cell physiology,
Taka-aki Koshimizu, and Gozoh Tsujimoto
December 1996, The Journal of biological chemistry,
Copied contents to your clipboard!