Exogenous tenascin inhibits mesodermal cell migration during amphibian gastrulation. 1990

J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
Laboratoire de Biologie Expérimentale, U.A. 1135 CNRS, Université Pierre et Marie Curie, Paris, France.

We have used amphibian gastrulation as a model system to study the action of the extracellular matrix (ECM) glycoprotein tenascin on mesodermal cell migration. Tenascin function was assayed in vitro during spreading of isolated cells from the dorsal marginal zone (DMZ) and during cell migration from DMZ explants. Plastic coated with bovine fibronectin or gastrula ECM was used as a substratum. In both cases, tenascin added to the medium inhibited spreading and migration of mesodermal cells. In addition, a substratum coated with a mixture of fibronectin and tenascin was found to prevent mesodermal cell migration. Tenascin was also microinjected into the blastocoel cavity of living embryos at the late blastula stage. This led to a complete arrest of gastrulation in more than 80% of the cases. Scanning electron microscopy of fractures from arrested gastrulae showed that mesodermal cell migration was blocked. Similar injection experiments carried out at the middle gastrula stage demonstrated that tenascin is able to inhibit cell migration after cells have already contacted the ECM. Mesodermal cell migration in the presence of tenascin could be restored in vitro and in vivo by the monoclonal antibody mAb Tn68 which is known to mask a cell binding site of the molecule. Finally, tenascin microinjected into the blastocoel of blastula or gastrula stage embryos bound within 15 min to the ECM fibrils at all the stages studied. Our results show that exogenous tenascin can be incorporated into embryonic ECM and interferes in vivo with the interactions of cells with a fibronectin-rich matrix.

UI MeSH Term Description Entries
D008648 Mesoderm The middle germ layer of an embryo derived from three paired mesenchymal aggregates along the neural tube. Mesenchyme,Dorsal Mesoderm,Intermediate Mesoderm,Lateral Plate Mesoderm,Mesenchyma,Paraxial Mesoderm,Dorsal Mesoderms,Intermediate Mesoderms,Lateral Plate Mesoderms,Mesenchymas,Mesoderm, Dorsal,Mesoderm, Intermediate,Mesoderm, Lateral Plate,Mesoderm, Paraxial,Mesoderms, Dorsal,Mesoderms, Intermediate,Mesoderms, Lateral Plate,Mesoderms, Paraxial,Paraxial Mesoderms,Plate Mesoderm, Lateral,Plate Mesoderms, Lateral
D008855 Microscopy, Electron, Scanning Microscopy in which the object is examined directly by an electron beam scanning the specimen point-by-point. The image is constructed by detecting the products of specimen interactions that are projected above the plane of the sample, such as backscattered electrons. Although SCANNING TRANSMISSION ELECTRON MICROSCOPY also scans the specimen point by point with the electron beam, the image is constructed by detecting the electrons, or their interaction products that are transmitted through the sample plane, so that is a form of TRANSMISSION ELECTRON MICROSCOPY. Scanning Electron Microscopy,Electron Scanning Microscopy,Electron Microscopies, Scanning,Electron Microscopy, Scanning,Electron Scanning Microscopies,Microscopies, Electron Scanning,Microscopies, Scanning Electron,Microscopy, Electron Scanning,Microscopy, Scanning Electron,Scanning Electron Microscopies,Scanning Microscopies, Electron,Scanning Microscopy, Electron
D010999 Pleurodeles A genus of aquatic newts belonging to the family Salamandridae and sometimes referred to as "spiny" tritons. There are two species P. waltlii and P. poireti. P. waltlii is commonly used in the laboratory. Since this genus adapts to aquarium living, it is easy to maintain in laboratories. Pleurodele
D002448 Cell Adhesion Adherence of cells to surfaces or to other cells. Adhesion, Cell,Adhesions, Cell,Cell Adhesions
D002465 Cell Movement The movement of cells from one location to another. Distinguish from CYTOKINESIS which is the process of dividing the CYTOPLASM of a cell. Cell Migration,Locomotion, Cell,Migration, Cell,Motility, Cell,Movement, Cell,Cell Locomotion,Cell Motility,Cell Movements,Movements, Cell
D004625 Embryo, Nonmammalian The developmental entity of a fertilized egg (ZYGOTE) in animal species other than MAMMALS. For chickens, use CHICK EMBRYO. Embryonic Structures, Nonmammalian,Embryo, Non-Mammalian,Embryonic Structures, Non-Mammalian,Nonmammalian Embryo,Nonmammalian Embryo Structures,Nonmammalian Embryonic Structures,Embryo Structure, Nonmammalian,Embryo Structures, Nonmammalian,Embryo, Non Mammalian,Embryonic Structure, Non-Mammalian,Embryonic Structure, Nonmammalian,Embryonic Structures, Non Mammalian,Embryos, Non-Mammalian,Embryos, Nonmammalian,Non-Mammalian Embryo,Non-Mammalian Embryonic Structure,Non-Mammalian Embryonic Structures,Non-Mammalian Embryos,Nonmammalian Embryo Structure,Nonmammalian Embryonic Structure,Nonmammalian Embryos,Structure, Non-Mammalian Embryonic,Structure, Nonmammalian Embryo,Structure, Nonmammalian Embryonic,Structures, Non-Mammalian Embryonic,Structures, Nonmammalian Embryo,Structures, Nonmammalian Embryonic
D005109 Extracellular Matrix A meshwork-like substance found within the extracellular space and in association with the basement membrane of the cell surface. It promotes cellular proliferation and provides a supporting structure to which cells or cell lysates in culture dishes adhere. Matrix, Extracellular,Extracellular Matrices,Matrices, Extracellular
D005775 Gastrula The developmental stage that follows BLASTULA or BLASTOCYST. It is characterized by the morphogenetic cell movements including invagination, ingression, and involution. Gastrulation begins with the formation of the PRIMITIVE STREAK, and ends with the formation of three GERM LAYERS, the body plan of the mature organism. Archenteron,Blastopore,Gastrocoele,Primitive Gut,Archenterons,Blastopores,Gastrocoeles,Gastrulas,Gut, Primitive,Guts, Primitive,Primitive Guts
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal

Related Publications

J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
November 1990, Developmental biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
August 1995, Developmental biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
October 2005, Current opinion in cell biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
March 1998, Developmental biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
January 2009, International review of cell and molecular biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
February 2018, Scientific reports,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
March 1975, Wilhelm Roux's archives of developmental biology,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
August 2009, Current opinion in genetics & development,
J F Riou, and D L Shi, and M Chiquet, and J C Boucaut
January 2013, PloS one,
Copied contents to your clipboard!