Augmented desensitization to epidermal growth factor (EGF) immediate actions: a novel mechanism for altered EGF growth response in mutant A431 cells. 1990

A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
Research Division, Joslin Diabetes Center, Boston, Massachusetts.

Epidermal growth factor (EGF) may either stimulate or inhibit cell growth. To elucidate the mechanism of these varied effects, we compared EGF action in parental A431 cells in which cell growth is inhibited, and clone 15, a mutant of these cells resistant to EGF growth inhibition. In both lines, EGF receptor was present in similar concentrations and underwent tyrosine phosphorylation to the same extent. Likewise, in both lines, acute exposure to EGF stimulated an increase in free cytoplasmic [Ca2+], as well as a similar increase in phosphorylation of lipocortin 1, a major substrate for the EGF receptor kinase whose phosphorylation is calcium-dependent. On the other hand, pretreatment of clone 15 cells with EGF for 72 h abolished EGF-induced phosphorylation of lipocortin 1 and led to a loss of the increase in cytoplasmic free [Ca2+], whereas no such desensitization was seen in the parental A431 cells. These data indicate a link between EGF-induced increase in cytoplasmic calcium, lipocortin phosphorylation, and cell growth and suggest that differences in mechanisms of desensitization to these immediate actions of EGF may lead to altered growth response to this hormone.

UI MeSH Term Description Entries
D009154 Mutation Any detectable and heritable change in the genetic material that causes a change in the GENOTYPE and which is transmitted to daughter cells and to succeeding generations. Mutations
D010766 Phosphorylation The introduction of a phosphoryl group into a compound through the formation of an ester bond between the compound and a phosphorus moiety. Phosphorylations
D002118 Calcium A basic element found in nearly all tissues. It is a member of the alkaline earth family of metals with the atomic symbol Ca, atomic number 20, and atomic weight 40. Calcium is the most abundant mineral in the body and combines with phosphorus to form calcium phosphate in the bones and teeth. It is essential for the normal functioning of nerves and muscles and plays a role in blood coagulation (as factor IV) and in many enzymatic processes. Coagulation Factor IV,Factor IV,Blood Coagulation Factor IV,Calcium-40,Calcium 40,Factor IV, Coagulation
D002135 Calcium-Binding Proteins Proteins to which calcium ions are bound. They can act as transport proteins, regulator proteins, or activator proteins. They typically contain EF HAND MOTIFS. Calcium Binding Protein,Calcium-Binding Protein,Calcium Binding Proteins,Binding Protein, Calcium,Binding Proteins, Calcium,Protein, Calcium Binding,Protein, Calcium-Binding
D002294 Carcinoma, Squamous Cell A carcinoma derived from stratified SQUAMOUS EPITHELIAL CELLS. It may also occur in sites where glandular or columnar epithelium is normally present. (From Stedman, 25th ed) Carcinoma, Epidermoid,Carcinoma, Planocellular,Carcinoma, Squamous,Squamous Cell Carcinoma,Carcinomas, Epidermoid,Carcinomas, Planocellular,Carcinomas, Squamous,Carcinomas, Squamous Cell,Epidermoid Carcinoma,Epidermoid Carcinomas,Planocellular Carcinoma,Planocellular Carcinomas,Squamous Carcinoma,Squamous Carcinomas,Squamous Cell Carcinomas
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D003593 Cytoplasm The part of a cell that contains the CYTOSOL and small structures excluding the CELL NUCLEUS; MITOCHONDRIA; and large VACUOLES. (Glick, Glossary of Biochemistry and Molecular Biology, 1990) Protoplasm,Cytoplasms,Protoplasms
D004361 Drug Tolerance Progressive diminution of the susceptibility of a human or animal to the effects of a drug, resulting from its continued administration. It should be differentiated from DRUG RESISTANCE wherein an organism, disease, or tissue fails to respond to the intended effectiveness of a chemical or drug. It should also be differentiated from MAXIMUM TOLERATED DOSE and NO-OBSERVED-ADVERSE-EFFECT LEVEL. Drug Tolerances,Tolerance, Drug,Tolerances, Drug
D004815 Epidermal Growth Factor A 6-kDa polypeptide growth factor initially discovered in mouse submaxillary glands. Human epidermal growth factor was originally isolated from urine based on its ability to inhibit gastric secretion and called urogastrone. Epidermal growth factor exerts a wide variety of biological effects including the promotion of proliferation and differentiation of mesenchymal and EPITHELIAL CELLS. It is synthesized as a transmembrane protein which can be cleaved to release a soluble active form. EGF,Epidermal Growth Factor-Urogastrone,Urogastrone,Human Urinary Gastric Inhibitor,beta-Urogastrone,Growth Factor, Epidermal,Growth Factor-Urogastrone, Epidermal,beta Urogastrone
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
April 1982, Proceedings of the National Academy of Sciences of the United States of America,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
September 1989, The Journal of biological chemistry,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
August 1998, Experimental cell research,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
February 1986, The Journal of cell biology,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
August 1987, FEBS letters,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
October 1992, ASGSB bulletin : publication of the American Society for Gravitational and Space Biology,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
February 1992, The Physiologist,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
November 2000, Nuclear medicine and biology,
A Karasik, and S S Reddy, and R B Pepinsky, and T Brock, and C R Kahn
March 1989, Tsitologiia,
Copied contents to your clipboard!