Gramicidin single-channel properties show no solvent-history dependence. 1990

D B Sawyer, and R E Koeppe, and O S Andersen
Department of Physiology and Biophysics, Cornell University Medical College, New York 10021.

The structure of membrane-associated gramicidins can depend on the solvent in which they were dissolved prior to membrane incorporation (LoGrasso, P. V., F. Moll, and T. A. Cross 1988. Biophys. J. 54:259-267; Killian, J. A., K. U. Prasad, D. Hains, and D. W. Urry. 1988. Biochemistry. 27:4848-4855). The peptide's solvent history might thus affect the functional characteristics of gramicidin channels (op. cit.). We tested this proposal by examining the properties (conductance, conductance dispersity, and average duration) of channels formed by [Val1]gramicidin A that had been dissolved in eight different solvents. The peptide was incorporated into lipid bilayers either by addition to the aqueous phase (and subsequent adsorption to the membrane) or by cosolubilization with the membrane-forming phospholipid. When the peptide was cosolubilized with the phospholipid, the channel properties did not vary with the solvent used. When the peptide was dissolved in chloroform, benzene, or trifluoroethanol and added through the aqueous phase, the channel properties differed from those found when gramidicin was dissolved in methanol, ethanol, dioxane, dimethylsulfoxide, or ethylacetate. The changes observed with the former three solvents were reproduced by adding them to the aqueous phase, and are therefore due to the ability of these solvents to partition into the membrane and alter the channels' behavior.

UI MeSH Term Description Entries
D007473 Ion Channels Gated, ion-selective glycoproteins that traverse membranes. The stimulus for ION CHANNEL GATING can be due to a variety of stimuli such as LIGANDS, a TRANSMEMBRANE POTENTIAL DIFFERENCE, mechanical deformation or through INTRACELLULAR SIGNALING PEPTIDES AND PROTEINS. Membrane Channels,Ion Channel,Ionic Channel,Ionic Channels,Membrane Channel,Channel, Ion,Channel, Ionic,Channel, Membrane,Channels, Ion,Channels, Ionic,Channels, Membrane
D008563 Membrane Lipids Lipids, predominantly phospholipids, cholesterol and small amounts of glycolipids found in membranes including cellular and intracellular membranes. These lipids may be arranged in bilayers in the membranes with integral proteins between the layers and peripheral proteins attached to the outside. Membrane lipids are required for active transport, several enzymatic activities and membrane formation. Cell Membrane Lipid,Cell Membrane Lipids,Membrane Lipid,Lipid, Cell Membrane,Lipid, Membrane,Lipids, Cell Membrane,Lipids, Membrane,Membrane Lipid, Cell,Membrane Lipids, Cell
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D010713 Phosphatidylcholines Derivatives of PHOSPHATIDIC ACIDS in which the phosphoric acid is bound in ester linkage to a CHOLINE moiety. Choline Phosphoglycerides,Choline Glycerophospholipids,Phosphatidyl Choline,Phosphatidyl Cholines,Phosphatidylcholine,Choline, Phosphatidyl,Cholines, Phosphatidyl,Glycerophospholipids, Choline,Phosphoglycerides, Choline
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D006096 Gramicidin A group of peptide antibiotics from BACILLUS brevis. Gramicidin C or S is a cyclic, ten-amino acid polypeptide and gramicidins A, B, D are linear. Gramicidin is one of the two principal components of TYROTHRICIN. Gramicidin A,Gramicidin A(1),Gramicidin B,Gramicidin C,Gramicidin D,Gramicidin Dubos,Gramicidin J,Gramicidin K,Gramicidin NF,Gramicidin P,Gramicidin S,Gramicidins,Gramoderm,Linear Gramicidin,Gramicidin, Linear
D012997 Solvents Liquids that dissolve other substances (solutes), generally solids, without any change in chemical composition, as, water containing sugar. (Grant & Hackh's Chemical Dictionary, 5th ed) Solvent

Related Publications

D B Sawyer, and R E Koeppe, and O S Andersen
August 1988, Biophysical journal,
D B Sawyer, and R E Koeppe, and O S Andersen
August 1987, Biochimica et biophysica acta,
D B Sawyer, and R E Koeppe, and O S Andersen
January 1979, Science (New York, N.Y.),
D B Sawyer, and R E Koeppe, and O S Andersen
December 1993, Biophysical journal,
D B Sawyer, and R E Koeppe, and O S Andersen
December 1981, Biochimica et biophysica acta,
D B Sawyer, and R E Koeppe, and O S Andersen
November 1979, The Journal of membrane biology,
D B Sawyer, and R E Koeppe, and O S Andersen
October 1989, Journal of theoretical biology,
D B Sawyer, and R E Koeppe, and O S Andersen
July 1989, Biochimica et biophysica acta,
D B Sawyer, and R E Koeppe, and O S Andersen
January 1999, Novartis Foundation symposium,
Copied contents to your clipboard!