Arachidonic acid release from cultured human amnion cells: the effect of dexamethasone. 1990

F A Potestio, and D M Olson
Department of Pediatrics, Lawson Research Institute, St. Joseph's Health Centre of London, University of Western Ontario, Canada.

Glucocorticoids inhibit prostaglandin (PG) synthesis in several cell types, presumably by inhibiting arachidonic acid (AA) deacylation from phospholipids. We studied the effects of glucocorticoids on cultured term human amnion cell AA release. Confluent monolayer cultures of amnion cells were adapted to serum-free medium, and phospholipids were labeled for 18 h with [14C]AA. The calcium ionophore A23187 (0.2-5.0 mumol/L) stimulated [14C]AA release (up to 2.2-fold) in a dose- and time-dependent manner. The apparent sources of the liberated [14C]AA were phosphatidylcholine and phosphatidylethanolamine. Pretreatment for 24 h with the synthetic glucocorticoid dexamethasone (0.1-1000 nmol/L) significantly inhibited (P less than 0.01) basal (unstimulated) [14C]AA release by 69% in subsequent 1-h experiments. The sole apparent source of free [14C]AA during this inhibitory state was phosphatidylethanolamine. Dexamethasone pretreatment slightly inhibited (13%; P less than 0.05) calcium ionophore-stimulated [14C]AA release; however, it was still 3.8-fold greater than basal release, suggesting that the glucocorticoid effect on stimulated AA release was not biologically relevant. Further characterization of the glucocorticoid effect revealed that preincubation of the cultures with dexamethasone for as little as 20 min inhibited basal [14C]AA release. Furthermore, studies involving actinomycin-D and cycloheximide demonstrated that inhibition of RNA and protein synthesis failed to block the glucocorticoid inhibition of basal AA liberation. The glucocorticoid receptor antagonist RU 38486, alone or in the presence of dexamethasone, also inhibited unstimulated [14C]AA release. Cortisol, dehydroisoandrosterone sulfate, 17 beta-estradiol, and progesterone all inhibited basal [14C]AA liberation. We conclude that glucocorticoids inhibit unstimulated AA release from cultured amnion cells, but do not prevent calcium ionophore from stimulating a large increase in AA release.(ABSTRACT TRUNCATED AT 250 WORDS)

UI MeSH Term Description Entries
D010743 Phospholipids Lipids containing one or more phosphate groups, particularly those derived from either glycerol (phosphoglycerides see GLYCEROPHOSPHOLIPIDS) or sphingosine (SPHINGOLIPIDS). They are polar lipids that are of great importance for the structure and function of cell membranes and are the most abundant of membrane lipids, although not stored in large amounts in the system. Phosphatides,Phospholipid
D011247 Pregnancy The status during which female mammals carry their developing young (EMBRYOS or FETUSES) in utero before birth, beginning from FERTILIZATION to BIRTH. Gestation,Pregnancies
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D003609 Dactinomycin A compound composed of a two CYCLIC PEPTIDES attached to a phenoxazine that is derived from STREPTOMYCES parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) Actinomycin,Actinomycin D,Meractinomycin,Cosmegen,Cosmegen Lyovac,Lyovac-Cosmegen,Lyovac Cosmegen,Lyovac, Cosmegen,LyovacCosmegen
D003907 Dexamethasone An anti-inflammatory 9-fluoro-glucocorticoid. Hexadecadrol,Decaject,Decaject-L.A.,Decameth,Decaspray,Dexasone,Dexpak,Hexadrol,Maxidex,Methylfluorprednisolone,Millicorten,Oradexon,Decaject L.A.
D004305 Dose-Response Relationship, Drug The relationship between the dose of an administered drug and the response of the organism to the drug. Dose Response Relationship, Drug,Dose-Response Relationships, Drug,Drug Dose-Response Relationship,Drug Dose-Response Relationships,Relationship, Drug Dose-Response,Relationships, Drug Dose-Response
D005260 Female Females
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000001 Calcimycin An ionophorous, polyether antibiotic from Streptomyces chartreusensis. It binds and transports CALCIUM and other divalent cations across membranes and uncouples oxidative phosphorylation while inhibiting ATPase of rat liver mitochondria. The substance is used mostly as a biochemical tool to study the role of divalent cations in various biological systems. 4-Benzoxazolecarboxylic acid, 5-(methylamino)-2-((3,9,11-trimethyl-8-(1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl)-1,7-dioxaspiro(5.5)undec-2-yl)methyl)-, (6S-(6alpha(2S*,3S*),8beta(R*),9beta,11alpha))-,A-23187,A23187,Antibiotic A23187,A 23187,A23187, Antibiotic
D000650 Amnion The innermost membranous sac that surrounds and protects the developing embryo which is bathed in the AMNIOTIC FLUID. Amnion cells are secretory EPITHELIAL CELLS and contribute to the amniotic fluid. Amniotic Membrane,Amnions,Amniotic Membranes,Membrane, Amniotic,Membranes, Amniotic

Related Publications

F A Potestio, and D M Olson
November 1989, Journal of developmental physiology,
F A Potestio, and D M Olson
January 1993, Clinical and experimental obstetrics & gynecology,
F A Potestio, and D M Olson
March 1997, Prostaglandins, leukotrienes, and essential fatty acids,
F A Potestio, and D M Olson
July 1978, Biochemical and biophysical research communications,
F A Potestio, and D M Olson
December 1981, Biochemical and biophysical research communications,
F A Potestio, and D M Olson
April 1990, Prostaglandins, leukotrienes, and essential fatty acids,
F A Potestio, and D M Olson
November 2006, Reproductive toxicology (Elmsford, N.Y.),
Copied contents to your clipboard!