Retrograde signaling in injured nerve--the axon reaction revisited. 2006

Shlomit Hanz, and Mike Fainzilber
Department of Biological Chemistry, Weizmann Institute of Science, 76100 Rehovot, Israel. shlomith@mit.edu

Injury to axons elicits changes in macromolecule synthesis in the corresponding cell bodies that are critical for an effective regenerative response. For decades the most easily studied aspect of this phenomenon was the onset of chromatolysis, a suite of structural changes in the cell body characterized by swelling, shifting of the nucleus and dispersal of Nissl bodies. The question: 'what is the signal for chromatolysis?' received no less than 10 possible answers in a comprehensive review article published more than three decades ago. Here we come back to this 36 years old question, and review progress on understanding the mechanism of retrograde injury signaling in lesioned peripheral nerves. Recent work suggests that this is based on local axonal synthesis of critical carrier proteins, including importins and vimentin that link diverse signaling molecules to the dynein retrograde motor. A multiplicity of binding sites and of potential signaling molecules, including transcription factors and MAP kinases (Erk, Jnk), may allow diverse options for information-rich encoding of the injury status of the axon for transmission to the cell body.

UI MeSH Term Description Entries
D008959 Models, Neurological Theoretical representations that simulate the behavior or activity of the neurological system, processes or phenomena; includes the use of mathematical equations, computers, and other electronic equipment. Neurologic Models,Model, Neurological,Neurologic Model,Neurological Model,Neurological Models,Model, Neurologic,Models, Neurologic
D009416 Nerve Regeneration Renewal or physiological repair of damaged nerve tissue. Nerve Tissue Regeneration,Nervous Tissue Regeneration,Neural Tissue Regeneration,Nerve Tissue Regenerations,Nervous Tissue Regenerations,Neural Tissue Regenerations,Regeneration, Nerve,Regeneration, Nerve Tissue,Regeneration, Nervous Tissue,Regeneration, Neural Tissue,Tissue Regeneration, Nerve,Tissue Regeneration, Nervous,Tissue Regeneration, Neural
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D001369 Axons Nerve fibers that are capable of rapidly conducting impulses away from the neuron cell body. Axon
D001370 Axonal Transport The directed transport of ORGANELLES and molecules along nerve cell AXONS. Transport can be anterograde (from the cell body) or retrograde (toward the cell body). (Alberts et al., Molecular Biology of the Cell, 3d ed, pG3) Axoplasmic Flow,Axoplasmic Transport,Axoplasmic Streaming,Axonal Transports,Axoplasmic Flows,Axoplasmic Transports,Streaming, Axoplasmic,Transport, Axonal,Transport, Axoplasmic,Transports, Axonal,Transports, Axoplasmic
D015398 Signal Transduction The intracellular transfer of information (biological activation/inhibition) through a signal pathway. In each signal transduction system, an activation/inhibition signal from a biologically active molecule (hormone, neurotransmitter) is mediated via the coupling of a receptor/enzyme to a second messenger system or to an ion channel. Signal transduction plays an important role in activating cellular functions, cell differentiation, and cell proliferation. Examples of signal transduction systems are the GAMMA-AMINOBUTYRIC ACID-postsynaptic receptor-calcium ion channel system, the receptor-mediated T-cell activation pathway, and the receptor-mediated activation of phospholipases. Those coupled to membrane depolarization or intracellular release of calcium include the receptor-mediated activation of cytotoxic functions in granulocytes and the synaptic potentiation of protein kinase activation. Some signal transduction pathways may be part of larger signal transduction pathways; for example, protein kinase activation is part of the platelet activation signal pathway. Cell Signaling,Receptor-Mediated Signal Transduction,Signal Pathways,Receptor Mediated Signal Transduction,Signal Transduction Pathways,Signal Transduction Systems,Pathway, Signal,Pathway, Signal Transduction,Pathways, Signal,Pathways, Signal Transduction,Receptor-Mediated Signal Transductions,Signal Pathway,Signal Transduction Pathway,Signal Transduction System,Signal Transduction, Receptor-Mediated,Signal Transductions,Signal Transductions, Receptor-Mediated,System, Signal Transduction,Systems, Signal Transduction,Transduction, Signal,Transductions, Signal
D020196 Trauma, Nervous System Traumatic injuries to the brain, cranial nerves, spinal cord, autonomic nervous system, or neuromuscular system, including iatrogenic injuries induced by surgical procedures. Craniocervical Injuries,Nervous System Injuries,Axonotmesis,Injuries, Nervous System,Neurotmesis,Axonotmeses,Craniocervical Injury,Nervous System Injury,Nervous System Trauma,Nervous System Traumas,Neurotmeses

Related Publications

Shlomit Hanz, and Mike Fainzilber
January 1982, Cell and tissue research,
Shlomit Hanz, and Mike Fainzilber
June 2002, Current opinion in neurobiology,
Shlomit Hanz, and Mike Fainzilber
September 2019, eLife,
Shlomit Hanz, and Mike Fainzilber
January 1983, Journal of neuroscience research,
Shlomit Hanz, and Mike Fainzilber
September 1979, Journal of anatomy,
Shlomit Hanz, and Mike Fainzilber
December 2013, Current opinion in neurobiology,
Shlomit Hanz, and Mike Fainzilber
January 2021, Frontiers in cell and developmental biology,
Shlomit Hanz, and Mike Fainzilber
January 1991, Annals of the New York Academy of Sciences,
Copied contents to your clipboard!