Increasing milking intervals decreases the mammary blood flow and mammary uptake of nutrients in dairy cows. 2006

E Delamaire, and J Guinard-Flament
Unité Mixte de Recherches, Institut National de la Recherche Agronomique-Agrocampus Rennes Production du Lait, 33590 Saint-Gilles, France.

Increasing the milking intervals reduces milk yield. The aims of this study were to determine whether the reduction in milk yield could be explained by a decrease in mammary uptake of the nutrients or a decrease in the efficiency of the mammary gland in using the milk precursors to synthesize milk components, or both. In a Latin square design with 5 periods, 4 multiparous lactating dairy cows in midlactation were milked at 8-, 12-, 16-, or 24-h intervals over a period of 7 d. The cows were surgically prepared to estimate the net mammary balance of nutrient precursors of milk components (glucose, alpha-amino nitrogen, acetate, beta-hydroxybutyrate, and total glycerol). The efficiency of the mammary gland in synthesizing milk components was estimated by the mammary uptake:milk output ratio. After 7 d of treatment, the decrease in milk yield of 6.1 kg/d between 8- and 24-h milking intervals was associated with a reduction in the uptake of nutrients by the mammary gland, whereas the efficiency of the mammary gland in synthesizing milk components remained relatively unchanged. The mammary uptake decreased by 26% for glucose, 32% for alpha-amino nitrogen, 18% for acetate, 24% for total glycerol, and 24% for beta-hydroxybutyrate, respectively. These reductions in nutrient uptake were due to a decrease in the mammary blood flow (1.23 +/- 0.24 L/min). For milk fat precursors (acetate, beta-hydroxybutyrate, and total glycerol), the decrease in mammary blood flow explained the entire reduction in the mammary uptake. For glucose and the milk protein precursors, the reduction in the mammary blood flow explained 60% of the decrease in the mammary uptake, with the other 40% being accounted for by a reduction in the mammary extraction of nutrients. The nutrient uptake was altered as milk yield decreased. These decreases began with the 16-h milking interval and were higher at the 24-h milking interval.

UI MeSH Term Description Entries
D007774 Lactation The processes of milk secretion by the maternal MAMMARY GLANDS after PARTURITION. The proliferation of the mammary glandular tissue, milk synthesis, and milk expulsion or let down are regulated by the interactions of several hormones including ESTRADIOL; PROGESTERONE; PROLACTIN; and OXYTOCIN. Lactation, Prolonged,Milk Secretion,Lactations, Prolonged,Milk Secretions,Prolonged Lactation,Prolonged Lactations
D008321 Mammary Glands, Animal MAMMARY GLANDS in the non-human MAMMALS. Mammae,Udder,Animal Mammary Glands,Animal Mammary Gland,Mammary Gland, Animal,Udders
D008323 Mammary Arteries Arteries originating from the subclavian or axillary arteries and distributing to the anterior thoracic wall, mediastinal structures, diaphragm, pectoral muscles and mammary gland. Internal Mammary Artery,Internal Thoracic Artery,Arteries, Internal Mammary,Arteries, Internal Thoracic,Arteries, Mammary,Artery, Internal Mammary,Artery, Internal Thoracic,Artery, Mammary,Internal Mammary Arteries,Internal Thoracic Arteries,Mammary Arteries, Internal,Mammary Artery,Mammary Artery, Internal,Thoracic Arteries, Internal,Thoracic Artery, Internal
D008892 Milk The off-white liquid secreted by the mammary glands of humans and other mammals. It contains proteins, sugar, lipids, vitamins, and minerals. Cow Milk,Cow's Milk,Milk, Cow,Milk, Cow's
D012039 Regional Blood Flow The flow of BLOOD through or around an organ or region of the body. Blood Flow, Regional,Blood Flows, Regional,Flow, Regional Blood,Flows, Regional Blood,Regional Blood Flows
D001784 Blood Gas Analysis Measurement of oxygen and carbon dioxide in the blood. Analysis, Blood Gas,Analyses, Blood Gas,Blood Gas Analyses,Gas Analyses, Blood,Gas Analysis, Blood
D002264 Carboxylic Acids Organic compounds containing the carboxy group (-COOH). This group of compounds includes amino acids and fatty acids. Carboxylic acids can be saturated, unsaturated, or aromatic. Carboxylic Acid,Acid, Carboxylic,Acids, Carboxylic
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D003612 Dairying Production, storage, and distribution of DAIRY PRODUCTS. Dairy Industry,Dairy Industries,Industries, Dairy,Industry, Dairy
D005230 Fatty Acids, Nonesterified FATTY ACIDS found in the plasma that are complexed with SERUM ALBUMIN for transport. These fatty acids are not in glycerol ester form. Fatty Acids, Free,Free Fatty Acid,Free Fatty Acids,NEFA,Acid, Free Fatty,Acids, Free Fatty,Acids, Nonesterified Fatty,Fatty Acid, Free,Nonesterified Fatty Acids

Related Publications

E Delamaire, and J Guinard-Flament
December 2017, Journal of dairy science,
E Delamaire, and J Guinard-Flament
November 2022, JDS communications,
E Delamaire, and J Guinard-Flament
July 1973, Journal of dairy science,
E Delamaire, and J Guinard-Flament
August 2004, The Journal of dairy research,
E Delamaire, and J Guinard-Flament
January 1988, Zentralblatt fur Veterinarmedizin. Reihe A,
E Delamaire, and J Guinard-Flament
November 2013, Animal : an international journal of animal bioscience,
E Delamaire, and J Guinard-Flament
February 2010, Journal of dairy science,
E Delamaire, and J Guinard-Flament
February 1986, American journal of veterinary research,
Copied contents to your clipboard!