The C-terminal region of alpha' subunit of soybean beta-conglycinin contains two types of vacuolar sorting determinants. 2006

Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.

In maturing seed cells, proteins that accumulate in the protein storage vacuoles (PSVs) are synthesized on the endoplasmic reticulum (ER) and transported by vesicles to the PSVs. Vacuolar sorting determinants (VSDs) which are usually amino acid sequences of short or moderate length direct the proteins to this pathway. VSDs identified so far are classified into two types: sequence specific VSDs (ssVSDs) and C-terminal VSDs (ctVSDs). We previously demonstrated that VSDs of alpha' and beta subunits of beta-conglycinin, one of major storage proteins of soybean (Glycine max), reside in the C-terminal ten amino acids. Here we show that both types of VSDs coexist within this region of the alpha' subunit. Although ctVSDs can function only at the very C-termini of proteins, the C-terminal ten amino acids of alpha' subunit directed green fluorescent protein (GFP) to the PSVs even when they were placed at the N-terminus of GFP, indicating that an ssVSD resides in the sequence. By mutation analysis, it was found that the core sequence of the ssVSD is Ser-Ile-Leu (fifth to seventh residues counted from the C-terminus) which is conserved in the alpha and beta subunits and some vicilin-like proteins. On the other hand, the sequence composed of the C-terminal three amino acids (AFY) directed GFP to the PSVs when it was placed at the C-terminus of GFP, though the function as a VSD was disrupted at the N-terminus of GFP, indicating that the AFY sequence is a ctVSD.

UI MeSH Term Description Entries
D008969 Molecular Sequence Data Descriptions of specific amino acid, carbohydrate, or nucleotide sequences which have appeared in the published literature and/or are deposited in and maintained by databanks such as GENBANK, European Molecular Biology Laboratory (EMBL), National Biomedical Research Foundation (NBRF), or other sequence repositories. Sequence Data, Molecular,Molecular Sequencing Data,Data, Molecular Sequence,Data, Molecular Sequencing,Sequencing Data, Molecular
D011993 Recombinant Fusion Proteins Recombinant proteins produced by the GENETIC TRANSLATION of fused genes formed by the combination of NUCLEIC ACID REGULATORY SEQUENCES of one or more genes with the protein coding sequences of one or more genes. Fusion Proteins, Recombinant,Recombinant Chimeric Protein,Recombinant Fusion Protein,Recombinant Hybrid Protein,Chimeric Proteins, Recombinant,Hybrid Proteins, Recombinant,Recombinant Chimeric Proteins,Recombinant Hybrid Proteins,Chimeric Protein, Recombinant,Fusion Protein, Recombinant,Hybrid Protein, Recombinant,Protein, Recombinant Chimeric,Protein, Recombinant Fusion,Protein, Recombinant Hybrid,Proteins, Recombinant Chimeric,Proteins, Recombinant Fusion,Proteins, Recombinant Hybrid
D005916 Globulins A group of proteins that are salt-soluble and form a large fraction of BLOOD PROTEINS. There are three types of globulins, ALPHA-GLOBULINS, BETA-GLOBULINS, and GAMMA-GLOBULINS, which are distinguished from one another by their degree of electrophoretic mobility. Globulin
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D001483 Base Sequence The sequence of PURINES and PYRIMIDINES in nucleic acids and polynucleotides. It is also called nucleotide sequence. DNA Sequence,Nucleotide Sequence,RNA Sequence,DNA Sequences,Base Sequences,Nucleotide Sequences,RNA Sequences,Sequence, Base,Sequence, DNA,Sequence, Nucleotide,Sequence, RNA,Sequences, Base,Sequences, DNA,Sequences, Nucleotide,Sequences, RNA
D013025 Glycine max An annual legume. The SEEDS of this plant are edible and used to produce a variety of SOY FOODS. Soy Beans,Soybeans,Bean, Soy,Beans, Soy,Soy Bean,Soybean
D014617 Vacuoles Any spaces or cavities within a cell. They may function in digestion, storage, secretion, or excretion. Vacuole
D016415 Sequence Alignment The arrangement of two or more amino acid or base sequences from an organism or organisms in such a way as to align areas of the sequences sharing common properties. The degree of relatedness or homology between the sequences is predicted computationally or statistically based on weights assigned to the elements aligned between the sequences. This in turn can serve as a potential indicator of the genetic relatedness between the organisms. Sequence Homology Determination,Determination, Sequence Homology,Alignment, Sequence,Alignments, Sequence,Determinations, Sequence Homology,Sequence Alignments,Sequence Homology Determinations
D017386 Sequence Homology, Amino Acid The degree of similarity between sequences of amino acids. This information is useful for the analyzing genetic relatedness of proteins and species. Homologous Sequences, Amino Acid,Amino Acid Sequence Homology,Homologs, Amino Acid Sequence,Homologs, Protein Sequence,Homology, Protein Sequence,Protein Sequence Homologs,Protein Sequence Homology,Sequence Homology, Protein,Homolog, Protein Sequence,Homologies, Protein Sequence,Protein Sequence Homolog,Protein Sequence Homologies,Sequence Homolog, Protein,Sequence Homologies, Protein,Sequence Homologs, Protein
D049452 Green Fluorescent Proteins Protein analogs and derivatives of the Aequorea victoria green fluorescent protein that emit light (FLUORESCENCE) when excited with ULTRAVIOLET RAYS. They are used in REPORTER GENES in doing GENETIC TECHNIQUES. Numerous mutants have been made to emit other colors or be sensitive to pH. Green Fluorescent Protein,Green-Fluorescent Protein,Green-Fluorescent Proteins,Fluorescent Protein, Green,Fluorescent Proteins, Green,Protein, Green Fluorescent,Protein, Green-Fluorescent,Proteins, Green Fluorescent,Proteins, Green-Fluorescent

Related Publications

Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
February 2004, Acta crystallographica. Section D, Biological crystallography,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
July 1990, Plant molecular biology,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
April 2001, Genes & genetic systems,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
April 1999, Journal of protein chemistry,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
May 2006, The Plant cell,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
January 1984, Journal of molecular and applied genetics,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
January 2008, International archives of allergy and immunology,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
May 2004, Bioscience, biotechnology, and biochemistry,
Keito Nishizawa, and Nobuyuki Maruyama, and Shigeru Utsumi
October 1994, Plant & cell physiology,
Copied contents to your clipboard!