Antisense-fos RNA causes partial reversion of the transformed phenotypes induced by the c-Ha-ras oncogene. 1990

B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
Merck Sharp & Dohme Research Laboratories, West Point, Pennsylvania 19486.

Several lines of evidence have suggested that c-fos may act downstream from c-Ha-ras in a growth-regulatory signal transduction pathway. We used antisense RNA to inhibit c-fos gene expression and investigated the effects of diminished c-fos expression on the phenotypes induced by the EJ c-Ha-ras oncogene in NIH 3T3 cells. Immunofluorescent staining demonstrated that the antisense RNA caused a marked reduction in the amount of c-fos protein expressed following serum stimulation. EJ cells containing antisense-fos RNA continued to overexpress ras and remained capable of proliferating in vitro. However, the antisense-fos RNA caused a partial reversion of the major transformed phenotypes of EJ cells, including a restoration of both density-dependent growth arrest and the ability to be rendered quiescent by serum deprivation, a reversion to a flat morphology, inhibition of anchorage-independent growth, and inhibition of tumorigenicity in nude mice. Our results indicate that inhibition of c-fos expression, to a level still supporting in vitro proliferation, prevents the transforming effects of the ras oncogene; they thus provide additional evidence for the participation of c-fos in ras-regulated signal transduction pathways.

UI MeSH Term Description Entries
D007700 Kinetics The rate dynamics in chemical or physical systems.
D008819 Mice, Nude Mutant mice homozygous for the recessive gene "nude" which fail to develop a thymus. They are useful in tumor studies and studies on immune responses. Athymic Mice,Mice, Athymic,Nude Mice,Mouse, Athymic,Mouse, Nude,Athymic Mouse,Nude Mouse
D009368 Neoplasm Transplantation Experimental transplantation of neoplasms in laboratory animals for research purposes. Transplantation, Neoplasm,Neoplasm Transplantations,Transplantations, Neoplasm
D010641 Phenotype The outward appearance of the individual. It is the product of interactions between genes, and between the GENOTYPE and the environment. Phenotypes
D011505 Protein-Tyrosine Kinases Protein kinases that catalyze the PHOSPHORYLATION of TYROSINE residues in proteins with ATP or other nucleotides as phosphate donors. Tyrosine Protein Kinase,Tyrosine-Specific Protein Kinase,Protein-Tyrosine Kinase,Tyrosine Kinase,Tyrosine Protein Kinases,Tyrosine-Specific Protein Kinases,Tyrosylprotein Kinase,Kinase, Protein-Tyrosine,Kinase, Tyrosine,Kinase, Tyrosine Protein,Kinase, Tyrosine-Specific Protein,Kinase, Tyrosylprotein,Kinases, Protein-Tyrosine,Kinases, Tyrosine Protein,Kinases, Tyrosine-Specific Protein,Protein Kinase, Tyrosine-Specific,Protein Kinases, Tyrosine,Protein Kinases, Tyrosine-Specific,Protein Tyrosine Kinase,Protein Tyrosine Kinases,Tyrosine Specific Protein Kinase,Tyrosine Specific Protein Kinases
D011518 Proto-Oncogene Proteins Products of proto-oncogenes. Normally they do not have oncogenic or transforming properties, but are involved in the regulation or differentiation of cell growth. They often have protein kinase activity. Cellular Proto-Oncogene Proteins,c-onc Proteins,Proto Oncogene Proteins, Cellular,Proto-Oncogene Products, Cellular,Cellular Proto Oncogene Proteins,Cellular Proto-Oncogene Products,Proto Oncogene Products, Cellular,Proto Oncogene Proteins,Proto-Oncogene Proteins, Cellular,c onc Proteins
D011519 Proto-Oncogenes Normal cellular genes homologous to viral oncogenes. The products of proto-oncogenes are important regulators of biological processes and appear to be involved in the events that serve to maintain the ordered procession through the cell cycle. Proto-oncogenes have names of the form c-onc. Proto-Oncogene,Proto Oncogene,Proto Oncogenes
D011905 Genes, ras Family of retrovirus-associated DNA sequences (ras) originally isolated from Harvey (H-ras, Ha-ras, rasH) and Kirsten (K-ras, Ki-ras, rasK) murine sarcoma viruses. Ras genes are widely conserved among animal species and sequences corresponding to both H-ras and K-ras genes have been detected in human, avian, murine, and non-vertebrate genomes. The closely related N-ras gene has been detected in human neuroblastoma and sarcoma cell lines. All genes of the family have a similar exon-intron structure and each encodes a p21 protein. Ha-ras Genes,Ki-ras Genes,N-ras Genes,c-Ha-ras Genes,c-Ki-ras Genes,c-N-ras Genes,ras Genes,v-Ha-ras Genes,v-Ki-ras Genes,H-ras Genes,H-ras Oncogenes,Ha-ras Oncogenes,K-ras Genes,K-ras Oncogenes,Ki-ras Oncogenes,N-ras Oncogenes,c-H-ras Genes,c-H-ras Proto-Oncogenes,c-Ha-ras Proto-Oncogenes,c-K-ras Genes,c-K-ras Proto-Oncogenes,c-Ki-ras Proto-Oncogenes,c-N-ras Proto-Oncogenes,ras Oncogene,v-H-ras Genes,v-H-ras Oncogenes,v-Ha-ras Oncogenes,v-K-ras Genes,v-K-ras Oncogenes,v-Ki-ras Oncogenes,Gene, Ha-ras,Gene, Ki-ras,Gene, v-Ha-ras,Gene, v-Ki-ras,Genes, Ha-ras,Genes, Ki-ras,Genes, N-ras,Genes, v-Ha-ras,Genes, v-Ki-ras,H ras Genes,H ras Oncogenes,H-ras Gene,H-ras Oncogene,Ha ras Genes,Ha ras Oncogenes,Ha-ras Gene,Ha-ras Oncogene,K ras Genes,K ras Oncogenes,K-ras Gene,K-ras Oncogene,Ki ras Genes,Ki ras Oncogenes,Ki-ras Gene,Ki-ras Oncogene,N ras Genes,N ras Oncogenes,N-ras Gene,N-ras Oncogene,c H ras Genes,c H ras Proto Oncogenes,c Ha ras Genes,c Ha ras Proto Oncogenes,c K ras Genes,c K ras Proto Oncogenes,c Ki ras Genes,c Ki ras Proto Oncogenes,c N ras Genes,c N ras Proto Oncogenes,c-H-ras Gene,c-H-ras Proto-Oncogene,c-Ha-ras Gene,c-Ha-ras Proto-Oncogene,c-K-ras Gene,c-K-ras Proto-Oncogene,c-Ki-ras Gene,c-Ki-ras Proto-Oncogene,c-N-ras Gene,c-N-ras Proto-Oncogene,ras Gene,ras Oncogenes,v H ras Genes,v H ras Oncogenes,v Ha ras Genes,v Ha ras Oncogenes,v K ras Genes,v K ras Oncogenes,v Ki ras Genes,v Ki ras Oncogenes,v-H-ras Gene,v-H-ras Oncogene,v-Ha-ras Gene,v-Ha-ras Oncogene,v-K-ras Gene,v-K-ras Oncogene,v-Ki-ras Gene,v-Ki-ras Oncogene
D001749 Urinary Bladder Neoplasms Tumors or cancer of the URINARY BLADDER. Bladder Cancer,Bladder Neoplasms,Cancer of Bladder,Bladder Tumors,Cancer of the Bladder,Malignant Tumor of Urinary Bladder,Neoplasms, Bladder,Urinary Bladder Cancer,Bladder Cancers,Bladder Neoplasm,Bladder Tumor,Cancer, Bladder,Cancer, Urinary Bladder,Neoplasm, Bladder,Neoplasm, Urinary Bladder,Tumor, Bladder,Tumors, Bladder,Urinary Bladder Neoplasm
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M

Related Publications

B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
October 2005, Oncology reports,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
June 1989, Zhonghua yi xue za zhi,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
December 1991, Science in China. Series B, Chemistry, life sciences & earth sciences,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
February 1993, Cancer research,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
January 1996, Methods in molecular medicine,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
September 1988, [Hokkaido igaku zasshi] The Hokkaido journal of medical science,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
September 1998, Biochemical and biophysical research communications,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
December 1995, Yonsei medical journal,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
December 1988, Gene,
B J Ledwith, and S Manam, and A R Kraynak, and W W Nichols, and M O Bradley
March 1988, The Journal of biological chemistry,
Copied contents to your clipboard!