Inducible gene expression of activin A/erythroid differentiation factor in HL-60 cells. 1990

S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
Fourth Department of Internal Medicine, University of Tokyo School of Medicine, Japan.

Treatment of HL-60 cells with 12-O-tetradecanoyl-phorbol 13-acetate (TPA) for 48 h induced expression of mRNA of beta A chain of activin A/erythroid differentiation factor. Under the same condition, interferon-gamma caused a slight increase in beta A chain mRNA, whereas 1 alpha, 25-dihydroxyvitamin D3, dimethylsulfoxide and all-trans-retinoic acid failed to induce this mRNA in HL-60 cells. Furthermore, 4 h-treatment with TPA or lipopolysaccharide (LPS) induced a marked increase in beta A chain mRNA levels in interferon-gamma-pretreated HL-60 cells. In the cells pretreated with 1 alpha, 25-dihydroxyvitamin D3, TPA and LPS induced as little increase in beta A chain mRNA as in the control cells. Neither alpha nor beta B chain mRNA was detected in any sample. These results indicate that interferon-gamma has a priming effect on the activation of activin A/erythroid differentiation factor gene by TPA or LPS in HL-60 cells.

UI MeSH Term Description Entries
D007265 Inhibins Glycoproteins that inhibit pituitary FOLLICLE STIMULATING HORMONE secretion. Inhibins are secreted by the Sertoli cells of the testes, the granulosa cells of the ovarian follicles, the placenta, and other tissues. Inhibins and ACTIVINS are modulators of FOLLICLE STIMULATING HORMONE secretions; both groups belong to the TGF-beta superfamily, as the TRANSFORMING GROWTH FACTOR BETA. Inhibins consist of a disulfide-linked heterodimer with a unique alpha linked to either a beta A or a beta B subunit to form inhibin A or inhibin B, respectively Female Inhibin,Inhibin,Inhibin-F,Inhibins, Female,Inhibins, Testicular,Ovarian Inhibin,Testicular Inhibin,Female Inhibins,Inhibin F,Inhibin, Female,Inhibin, Ovarian,Inhibin, Testicular,Testicular Inhibins
D008070 Lipopolysaccharides Lipid-containing polysaccharides which are endotoxins and important group-specific antigens. They are often derived from the cell wall of gram-negative bacteria and induce immunoglobulin secretion. The lipopolysaccharide molecule consists of three parts: LIPID A, core polysaccharide, and O-specific chains (O ANTIGENS). When derived from Escherichia coli, lipopolysaccharides serve as polyclonal B-cell mitogens commonly used in laboratory immunology. (From Dorland, 28th ed) Lipopolysaccharide,Lipoglycans
D011061 Poly A A group of adenine ribonucleotides in which the phosphate residues of each adenine ribonucleotide act as bridges in forming diester linkages between the ribose moieties. Adenine Polynucleotides,Polyadenylic Acids,Poly(rA),Polynucleotides, Adenine
D002454 Cell Differentiation Progressive restriction of the developmental potential and increasing specialization of function that leads to the formation of specialized cells, tissues, and organs. Differentiation, Cell,Cell Differentiations,Differentiations, Cell
D002460 Cell Line Established cell cultures that have the potential to propagate indefinitely. Cell Lines,Line, Cell,Lines, Cell
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D012313 RNA A polynucleotide consisting essentially of chains with a repeating backbone of phosphate and ribose units to which nitrogenous bases are attached. RNA is unique among biological macromolecules in that it can encode genetic information, serve as an abundant structural component of cells, and also possesses catalytic activity. (Rieger et al., Glossary of Genetics: Classical and Molecular, 5th ed) RNA, Non-Polyadenylated,Ribonucleic Acid,Gene Products, RNA,Non-Polyadenylated RNA,Acid, Ribonucleic,Non Polyadenylated RNA,RNA Gene Products,RNA, Non Polyadenylated
D012333 RNA, Messenger RNA sequences that serve as templates for protein synthesis. Bacterial mRNAs are generally primary transcripts in that they do not require post-transcriptional processing. Eukaryotic mRNA is synthesized in the nucleus and must be exported to the cytoplasm for translation. Most eukaryotic mRNAs have a sequence of polyadenylic acid at the 3' end, referred to as the poly(A) tail. The function of this tail is not known for certain, but it may play a role in the export of mature mRNA from the nucleus as well as in helping stabilize some mRNA molecules by retarding their degradation in the cytoplasm. Messenger RNA,Messenger RNA, Polyadenylated,Poly(A) Tail,Poly(A)+ RNA,Poly(A)+ mRNA,RNA, Messenger, Polyadenylated,RNA, Polyadenylated,mRNA,mRNA, Non-Polyadenylated,mRNA, Polyadenylated,Non-Polyadenylated mRNA,Poly(A) RNA,Polyadenylated mRNA,Non Polyadenylated mRNA,Polyadenylated Messenger RNA,Polyadenylated RNA,RNA, Polyadenylated Messenger,mRNA, Non Polyadenylated
D013755 Tetradecanoylphorbol Acetate A phorbol ester found in CROTON OIL with very effective tumor promoting activity. It stimulates the synthesis of both DNA and RNA. Phorbol Myristate Acetate,12-Myristoyl-13-acetylphorbol,12-O-Tetradecanoyl Phorbol 13-Acetate,Tetradecanoylphorbol Acetate, 4a alpha-Isomer,12 Myristoyl 13 acetylphorbol,12 O Tetradecanoyl Phorbol 13 Acetate,13-Acetate, 12-O-Tetradecanoyl Phorbol,Acetate, Phorbol Myristate,Acetate, Tetradecanoylphorbol,Myristate Acetate, Phorbol,Phorbol 13-Acetate, 12-O-Tetradecanoyl,Tetradecanoylphorbol Acetate, 4a alpha Isomer
D014158 Transcription, Genetic The biosynthesis of RNA carried out on a template of DNA. The biosynthesis of DNA from an RNA template is called REVERSE TRANSCRIPTION. Genetic Transcription

Related Publications

S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
June 1992, Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
August 1992, Nihon rinsho. Japanese journal of clinical medicine,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
January 1998, Biochemical and biophysical research communications,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
April 1994, Blood,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
August 1993, Blood,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
October 2002, Nucleic acids research,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
January 1987, Leukemia research,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
March 1984, The Journal of biological chemistry,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
April 2003, Experimental & molecular medicine,
S Takahashi, and T Yamashita, and Y Eto, and H Shibai, and K Miyamoto, and E Ogata
May 1991, Cancer research,
Copied contents to your clipboard!