| D007798 |
Lampreys |
Common name for the only family (Petromyzontidae) of eellike fish in the order Petromyzontiformes. They are jawless but have a sucking mouth with horny teeth. |
Eels, Lamprey,Petromyzontidae,Petromyzontiformes,Eel, Lamprey,Lamprey,Lamprey Eel,Lamprey Eels |
|
| D008124 |
Locomotion |
Movement or the ability to move from one place or another. It can refer to humans, vertebrate or invertebrate animals, and microorganisms. |
Locomotor Activity,Activities, Locomotor,Activity, Locomotor,Locomotor Activities |
|
| D008297 |
Male |
|
Males |
|
| D008564 |
Membrane Potentials |
The voltage differences across a membrane. For cellular membranes they are computed by subtracting the voltage measured outside the membrane from the voltage measured inside the membrane. They result from differences of inside versus outside concentration of potassium, sodium, chloride, and other ions across cells' or ORGANELLES membranes. For excitable cells, the resting membrane potentials range between -30 and -100 millivolts. Physical, chemical, or electrical stimuli can make a membrane potential more negative (hyperpolarization), or less negative (depolarization). |
Resting Potentials,Transmembrane Potentials,Delta Psi,Resting Membrane Potential,Transmembrane Electrical Potential Difference,Transmembrane Potential Difference,Difference, Transmembrane Potential,Differences, Transmembrane Potential,Membrane Potential,Membrane Potential, Resting,Membrane Potentials, Resting,Potential Difference, Transmembrane,Potential Differences, Transmembrane,Potential, Membrane,Potential, Resting,Potential, Transmembrane,Potentials, Membrane,Potentials, Resting,Potentials, Transmembrane,Resting Membrane Potentials,Resting Potential,Transmembrane Potential,Transmembrane Potential Differences |
|
| D009435 |
Synaptic Transmission |
The communication from a NEURON to a target (neuron, muscle, or secretory cell) across a SYNAPSE. In chemical synaptic transmission, the presynaptic neuron releases a NEUROTRANSMITTER that diffuses across the synaptic cleft and binds to specific synaptic receptors, activating them. The activated receptors modulate specific ion channels and/or second-messenger systems in the postsynaptic cell. In electrical synaptic transmission, electrical signals are communicated as an ionic current flow across ELECTRICAL SYNAPSES. |
Neural Transmission,Neurotransmission,Transmission, Neural,Transmission, Synaptic |
|
| D002614 |
Chelating Agents |
Chemicals that bind to and remove ions from solutions. Many chelating agents function through the formation of COORDINATION COMPLEXES with METALS. |
Chelating Agent,Chelator,Complexons,Metal Antagonists,Chelators,Metal Chelating Agents,Agent, Chelating,Agents, Chelating,Agents, Metal Chelating,Antagonists, Metal,Chelating Agents, Metal |
|
| D004533 |
Egtazic Acid |
A chelating agent relatively more specific for calcium and less toxic than EDETIC ACID. |
EGTA,Ethylene Glycol Tetraacetic Acid,EGATA,Egtazic Acid Disodium Salt,Egtazic Acid Potassium Salt,Egtazic Acid Sodium Salt,Ethylene Glycol Bis(2-aminoethyl ether)tetraacetic Acid,Ethylenebis(oxyethylenenitrile)tetraacetic Acid,GEDTA,Glycoletherdiamine-N,N,N',N'-tetraacetic Acid,Magnesium-EGTA,Tetrasodium EGTA,Acid, Egtazic,EGTA, Tetrasodium,Magnesium EGTA |
|
| D004594 |
Electrophysiology |
The study of the generation and behavior of electrical charges in living organisms particularly the nervous system and the effects of electricity on living organisms. |
|
|
| D005260 |
Female |
|
Females |
|
| D005439 |
Flufenamic Acid |
An anthranilic acid derivative with analgesic, anti-inflammatory, and antipyretic properties. It is used in musculoskeletal and joint disorders and administered by mouth and topically. (From Martindale, The Extra Pharmacopoeia, 30th ed, p16) |
Dignodolin,Acid, Flufenamic |
|