The carboxylic acid groups of bovine luteinizing hormone. The effects of their modification on receptor site binding and subunit-subunit interaction. 1975

M R Faith, and J G Pierce

The modification of the carboxyl groups of the subunits of bovine luteinizing hormone to neutral derivatives by carbodiimide-mediated coupling with glycine methyl ester has been studied. The modified alpha subunit, which has 8 residues of glycine methyl ester incorporated, will no longer recombine with native beta (hormone-specific) subunit, but the modified beta subunit, with 6 to 7 glycine methyl esters incorporated, will recombine with native alpha to yield a partially active hormone. Derivatization of the intact hormone results in dissociation to subunits together with formation of a major side product which is covalently cross-linked. Significant cross-linked product was not obtained during modification of individual subunits, thus indicating an orientation between an activated carboxyl group(s) and a nucleophile(s) in the intact hormone which favors coupling. Separation of subunits from the derivatized, noncross-linked fraction by countercurrent distribution reveals a heterogeneous preparation of the modified alpha subunit which also will not recombine with either a native or modified beta subunit. The beta subunit from the modified intact hormone was indistinguishable from the modified isolated beta subunit in amino acid composition and in ability to recombine with native alpha subunit. The results are consonant with data from this and other laboratories in which various modifications of the alpha chain, the subunit common to the glycoproteins, more seriously affect recombination than similar modifications of the beta subunits. The number of carboxyl groups modified in each subunit is compatible with but not in total agreement with assignments of amides reported from sequence studies.

UI MeSH Term Description Entries
D007986 Luteinizing Hormone A major gonadotropin secreted by the adenohypophysis (PITUITARY GLAND, ANTERIOR). Luteinizing hormone regulates steroid production by the interstitial cells of the TESTIS and the OVARY. The preovulatory LUTEINIZING HORMONE surge in females induces OVULATION, and subsequent LUTEINIZATION of the follicle. LUTEINIZING HORMONE consists of two noncovalently linked subunits, alpha and beta. Within a species, the alpha subunit is common in the three pituitary glycoprotein hormones (TSH, LH and FSH), but the beta subunit is unique and confers its biological specificity. ICSH (Interstitial Cell Stimulating Hormone),Interstitial Cell-Stimulating Hormone,LH (Luteinizing Hormone),Lutropin,Luteoziman,Luteozyman,Hormone, Interstitial Cell-Stimulating,Hormone, Luteinizing,Interstitial Cell Stimulating Hormone
D008297 Male Males
D011485 Protein Binding The process in which substances, either endogenous or exogenous, bind to proteins, peptides, enzymes, protein precursors, or allied compounds. Specific protein-binding measures are often used as assays in diagnostic assessments. Plasma Protein Binding Capacity,Binding, Protein
D011487 Protein Conformation The characteristic 3-dimensional shape of a protein, including the secondary, supersecondary (motifs), tertiary (domains) and quaternary structure of the peptide chain. PROTEIN STRUCTURE, QUATERNARY describes the conformation assumed by multimeric proteins (aggregates of more than one polypeptide chain). Conformation, Protein,Conformations, Protein,Protein Conformations
D011956 Receptors, Cell Surface Cell surface proteins that bind signalling molecules external to the cell with high affinity and convert this extracellular event into one or more intracellular signals that alter the behavior of the target cell (From Alberts, Molecular Biology of the Cell, 2nd ed, pp693-5). Cell surface receptors, unlike enzymes, do not chemically alter their ligands. Cell Surface Receptor,Cell Surface Receptors,Hormone Receptors, Cell Surface,Receptors, Endogenous Substances,Cell Surface Hormone Receptors,Endogenous Substances Receptors,Receptor, Cell Surface,Surface Receptor, Cell
D002417 Cattle Domesticated bovine animals of the genus Bos, usually kept on a farm or ranch and used for the production of meat or dairy products or for heavy labor. Beef Cow,Bos grunniens,Bos indicus,Bos indicus Cattle,Bos taurus,Cow,Cow, Domestic,Dairy Cow,Holstein Cow,Indicine Cattle,Taurine Cattle,Taurus Cattle,Yak,Zebu,Beef Cows,Bos indicus Cattles,Cattle, Bos indicus,Cattle, Indicine,Cattle, Taurine,Cattle, Taurus,Cattles, Bos indicus,Cattles, Indicine,Cattles, Taurine,Cattles, Taurus,Cow, Beef,Cow, Dairy,Cow, Holstein,Cows,Dairy Cows,Domestic Cow,Domestic Cows,Indicine Cattles,Taurine Cattles,Taurus Cattles,Yaks,Zebus
D002462 Cell Membrane The lipid- and protein-containing, selectively permeable membrane that surrounds the cytoplasm in prokaryotic and eukaryotic cells. Plasma Membrane,Cytoplasmic Membrane,Cell Membranes,Cytoplasmic Membranes,Membrane, Cell,Membrane, Cytoplasmic,Membrane, Plasma,Membranes, Cell,Membranes, Cytoplasmic,Membranes, Plasma,Plasma Membranes
D000595 Amino Acid Sequence The order of amino acids as they occur in a polypeptide chain. This is referred to as the primary structure of proteins. It is of fundamental importance in determining PROTEIN CONFORMATION. Protein Structure, Primary,Amino Acid Sequences,Sequence, Amino Acid,Sequences, Amino Acid,Primary Protein Structure,Primary Protein Structures,Protein Structures, Primary,Structure, Primary Protein,Structures, Primary Protein
D000596 Amino Acids Organic compounds that generally contain an amino (-NH2) and a carboxyl (-COOH) group. Twenty alpha-amino acids are the subunits which are polymerized to form proteins. Amino Acid,Acid, Amino,Acids, Amino
D000600 Amino Acids, Dicarboxylic Dicarboxylic Amino Acids,Acids, Dicarboxylic Amino

Related Publications

M R Faith, and J G Pierce
December 1971, FEBS letters,
M R Faith, and J G Pierce
January 1974, Current topics in molecular endocrinology,
M R Faith, and J G Pierce
January 1976, Endocrinology,
M R Faith, and J G Pierce
February 1995, European journal of endocrinology,
M R Faith, and J G Pierce
November 1973, Journal of dairy science,
Copied contents to your clipboard!