[Sequence of Escherichia coli O11 O-antigen gene cluster and identification of molecular markers specific to O11]. 2006

Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
TEDA School of Biological Sciences, Nankai University, Tianjin 300457, China. wanglei@nankai.edu.cn

Escherichia coli O11 belongs to Shiga toxin-producing Escherichia coli (STEC), which can cause food-borne disease, hemorrhagic colitis, and hemolytic-uremic syndrome (HUS) in humans. Because of its character of specificity, the O-antigen gene cluster provides the best material for the selection of molecular markers which can be used for rapid genotyping of bacterial strain. In this study, the E.coli O11 O-antigen gene cluster was amplified by Long-range PCR and was sequenced using Shotgun-sequencing approach. Twelve open reading frames were assigned functions on the basis of homology in the E. coli O11 O-antigen gene cluster, including UDP-N-acetyl glucosamine-4-epimerase gene (gne), genes responsible for the biosynthesis of GDP-L-fucose (gmd, fcl, gmm, manC, manB), glycosyl transferase genes, O-unit flippase gene (wzx) and O-antigen polymerase gene (wzy). By polymerase chain reaction against representative stains for all the 166 E. coli and 43 Shigella O serotypes, two genes and four pairs of primers were identified to be specific to E. coli O11. Further PCR was done to detect E. coli O11 from the environmental specimens, and the sensitivities for detecting E.coli O11 from the pork and dejecta specimens were 0.25 cfu/g and 2.5 x 10(3) cfu/g, respectively. Moreover, eight probes were designed and proved to be unique to E. coli O11, which provides the basis for a sensitive test of the rapid detection of E. coli O11 by DNA microarray method.

UI MeSH Term Description Entries
D009693 Nucleic Acid Hybridization Widely used technique which exploits the ability of complementary sequences in single-stranded DNAs or RNAs to pair with each other to form a double helix. Hybridization can take place between two complimentary DNA sequences, between a single-stranded DNA and a complementary RNA, or between two RNA sequences. The technique is used to detect and isolate specific sequences, measure homology, or define other characteristics of one or both strands. (Kendrew, Encyclopedia of Molecular Biology, 1994, p503) Genomic Hybridization,Acid Hybridization, Nucleic,Acid Hybridizations, Nucleic,Genomic Hybridizations,Hybridization, Genomic,Hybridization, Nucleic Acid,Hybridizations, Genomic,Hybridizations, Nucleic Acid,Nucleic Acid Hybridizations
D004926 Escherichia coli A species of gram-negative, facultatively anaerobic, rod-shaped bacteria (GRAM-NEGATIVE FACULTATIVELY ANAEROBIC RODS) commonly found in the lower part of the intestine of warm-blooded animals. It is usually nonpathogenic, but some strains are known to produce DIARRHEA and pyogenic infections. Pathogenic strains (virotypes) are classified by their specific pathogenic mechanisms such as toxins (ENTEROTOXIGENIC ESCHERICHIA COLI), etc. Alkalescens-Dispar Group,Bacillus coli,Bacterium coli,Bacterium coli commune,Diffusely Adherent Escherichia coli,E coli,EAggEC,Enteroaggregative Escherichia coli,Enterococcus coli,Diffusely Adherent E. coli,Enteroaggregative E. coli,Enteroinvasive E. coli,Enteroinvasive Escherichia coli
D005798 Genes, Bacterial The functional hereditary units of BACTERIA. Bacterial Gene,Bacterial Genes,Gene, Bacterial
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006154 Guanosine Diphosphate Fucose A nucleoside diphosphate sugar formed from GDPmannose, which provides fucose for lipopolysaccharides of bacterial cell walls, and for blood group substances and other glycoproteins. GDP Fucose,Guanosine Diphosphofucose,Diphosphate Fucose, Guanosine,Diphosphofucose, Guanosine,Fucose, GDP,Fucose, Guanosine Diphosphate
D006602 Hexosyltransferases Enzymes that catalyze the transfer of hexose groups. EC 2.4.1.-.
D013379 Substrate Specificity A characteristic feature of enzyme activity in relation to the kind of substrate on which the enzyme or catalytic molecule reacts. Specificities, Substrate,Specificity, Substrate,Substrate Specificities
D013997 Time Factors Elements of limited time intervals, contributing to particular results or situations. Time Series,Factor, Time,Time Factor
D015342 DNA Probes Species- or subspecies-specific DNA (including COMPLEMENTARY DNA; conserved genes, whole chromosomes, or whole genomes) used in hybridization studies in order to identify microorganisms, to measure DNA-DNA homologies, to group subspecies, etc. The DNA probe hybridizes with a specific mRNA, if present. Conventional techniques used for testing for the hybridization product include dot blot assays, Southern blot assays, and DNA:RNA hybrid-specific antibody tests. Conventional labels for the DNA probe include the radioisotope labels 32P and 125I and the chemical label biotin. The use of DNA probes provides a specific, sensitive, rapid, and inexpensive replacement for cell culture techniques for diagnosing infections. Chromosomal Probes,DNA Hybridization Probe,DNA Probe,Gene Probes, DNA,Conserved Gene Probes,DNA Hybridization Probes,Whole Chromosomal Probes,Whole Genomic DNA Probes,Chromosomal Probes, Whole,DNA Gene Probes,Gene Probes, Conserved,Hybridization Probe, DNA,Hybridization Probes, DNA,Probe, DNA,Probe, DNA Hybridization,Probes, Chromosomal,Probes, Conserved Gene,Probes, DNA,Probes, DNA Gene,Probes, DNA Hybridization,Probes, Whole Chromosomal
D015415 Biomarkers Measurable and quantifiable biological parameters (e.g., specific enzyme concentration, specific hormone concentration, specific gene phenotype distribution in a population, presence of biological substances) which serve as indices for health- and physiology-related assessments, such as disease risk, psychiatric disorders, ENVIRONMENTAL EXPOSURE and its effects, disease diagnosis; METABOLIC PROCESSES; SUBSTANCE ABUSE; PREGNANCY; cell line development; EPIDEMIOLOGIC STUDIES; etc. Biochemical Markers,Biological Markers,Biomarker,Clinical Markers,Immunologic Markers,Laboratory Markers,Markers, Biochemical,Markers, Biological,Markers, Clinical,Markers, Immunologic,Markers, Laboratory,Markers, Serum,Markers, Surrogate,Markers, Viral,Serum Markers,Surrogate Markers,Viral Markers,Biochemical Marker,Biologic Marker,Biologic Markers,Clinical Marker,Immune Marker,Immune Markers,Immunologic Marker,Laboratory Marker,Marker, Biochemical,Marker, Biological,Marker, Clinical,Marker, Immunologic,Marker, Laboratory,Marker, Serum,Marker, Surrogate,Serum Marker,Surrogate End Point,Surrogate End Points,Surrogate Endpoint,Surrogate Endpoints,Surrogate Marker,Viral Marker,Biological Marker,End Point, Surrogate,End Points, Surrogate,Endpoint, Surrogate,Endpoints, Surrogate,Marker, Biologic,Marker, Immune,Marker, Viral,Markers, Biologic,Markers, Immune

Related Publications

Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
September 2002, Gene,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
December 2004, Wei sheng wu xue bao = Acta microbiologica Sinica,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
August 1998, Infection and immunity,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
April 2005, Veterinary microbiology,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
November 1998, Journal of clinical microbiology,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
March 2005, FEMS microbiology letters,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
May 2004, FEMS microbiology letters,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
January 2004, Journal of applied microbiology,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
October 1995, Gene,
Wei Wang, and Xia Peng, and Quan Wang, and Jian-Song Cheng, and Lei Wang
August 2004, Journal of clinical microbiology,
Copied contents to your clipboard!