Tumor necrosis factor-alpha strongly potentiates interleukin-3 and granulocyte-macrophage colony-stimulating factor-induced proliferation of human CD34+ hematopoietic progenitor cells. 1990

C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
Laboratory for Immunological Research, Schering-Plough (UNICET) Dardilly, France.

Previous studies have shown that tumor necrosis factors (TNFs) inhibit the proliferative effects of crude or purified colony-stimulating factors (CSFs) on low density human bone marrow cell fractions. In the present study we investigated the effects of TNF alpha on the growth of highly purified CD34+ human hematopoietic progenitor cells (HPC) in response to recombinant CSFs. In short-term liquid cultures (5 to 8 days), TNF alpha strongly potentiates interleukin-3 (IL-3) and granulocyte-macrophage-CSF (GM-CSF)-induced growth of CD34+ HPC, while it has no proliferative effect per se. Within 8 days, the number of viable cells obtained in TNF alpha-supplemented cultures is threefold higher than in cultures carried out with IL-3 or GM-CSF alone. Secondary liquid cultures showed that the potentiating effect of TNF alpha on IL-3-induced proliferation of CD34+ HPC does not result from an IL-3-dependent generation of TNF alpha responsive cells. Limiting dilution analysis indicates that TNF alpha increases both the frequency of IL-3 responding cells and the average size of the IL-3-dependent clones. The potentiating effect of TNF alpha on IL-3- and GM-CSF-dependent growth of CD34+ HPC is also observed in day 7 colony assays. Under these short-term culture conditions, TNF alpha does not appear to accelerate cell maturation as a precursor morphology is retained. Finally, TNF alpha inhibits the relatively weak growth-promoting effect of granulocyte-CSF (G-CSF), which acts on a more committed subpopulation of CD34+ HPC different from that recruited by IL-3 and GM-CSF. TNF beta displays the same modulatory effects as TNF alpha. Thus, TNFs appear to enhance the early stages of myelopoiesis.

UI MeSH Term Description Entries
D007377 Interleukin-3 A multilineage cell growth factor secreted by LYMPHOCYTES; EPITHELIAL CELLS; and ASTROCYTES which stimulates clonal proliferation and differentiation of various types of blood and tissue cells. Burst-Promoting Factor, Erythrocyte,Colony-Stimulating Factor 2 Alpha,Colony-Stimulating Factor, Mast-Cell,Colony-Stimulating Factor, Multipotential,Erythrocyte Burst-Promoting Factor,IL-3,Mast-Cell Colony-Stimulating Factor,Multipotential Colony-Stimulating Factor,P-Cell Stimulating Factor,Eosinophil-Mast Cell Growth-Factor,Hematopoietin-2,Burst Promoting Factor, Erythrocyte,Colony Stimulating Factor, Mast Cell,Colony Stimulating Factor, Multipotential,Eosinophil Mast Cell Growth Factor,Erythrocyte Burst Promoting Factor,Hematopoietin 2,Interleukin 3,Multipotential Colony Stimulating Factor,P Cell Stimulating Factor
D008233 Lymphotoxin-alpha A tumor necrosis factor family member that is released by activated LYMPHOCYTES. Soluble lymphotoxin is specific for TUMOR NECROSIS FACTOR RECEPTOR TYPE I; TUMOR NECROSIS FACTOR RECEPTOR TYPE II; and TUMOR NECROSIS FACTOR RECEPTOR SUPERFAMILY, MEMBER 14. Lymphotoxin-alpha can form a membrane-bound heterodimer with LYMPHOTOXIN-BETA that has specificity for the LYMPHOTOXIN BETA RECEPTOR. TNF Superfamily, Member 1,TNF-beta,Tumor Necrosis Factor Ligand Superfamily Member 1,Tumor Necrosis Factor-beta,Lymphotoxin,Lymphotoxin-alpha3,Soluble Lymphotoxin-alpha,alpha-Lymphotoxin,Lymphotoxin alpha,Lymphotoxin alpha3,Lymphotoxin-alpha, Soluble,Soluble Lymphotoxin alpha,Tumor Necrosis Factor beta,alpha Lymphotoxin
D001854 Bone Marrow Cells Cells contained in the bone marrow including fat cells (see ADIPOCYTES); STROMAL CELLS; MEGAKARYOCYTES; and the immediate precursors of most blood cells. Bone Marrow Cell,Cell, Bone Marrow,Cells, Bone Marrow,Marrow Cell, Bone,Marrow Cells, Bone
D002455 Cell Division The fission of a CELL. It includes CYTOKINESIS, when the CYTOPLASM of a cell is divided, and CELL NUCLEUS DIVISION. M Phase,Cell Division Phase,Cell Divisions,Division Phase, Cell,Division, Cell,Divisions, Cell,M Phases,Phase, Cell Division,Phase, M,Phases, M
D002469 Cell Separation Techniques for separating distinct populations of cells. Cell Isolation,Cell Segregation,Isolation, Cell,Cell Isolations,Cell Segregations,Cell Separations,Isolations, Cell,Segregation, Cell,Segregations, Cell,Separation, Cell,Separations, Cell
D003115 Colony-Stimulating Factors Glycoproteins found in a subfraction of normal mammalian plasma and urine. They stimulate the proliferation of bone marrow cells in agar cultures and the formation of colonies of granulocytes and/or macrophages. The factors include INTERLEUKIN-3; (IL-3); GRANULOCYTE COLONY-STIMULATING FACTOR; (G-CSF); MACROPHAGE COLONY-STIMULATING FACTOR; (M-CSF); and GRANULOCYTE-MACROPHAGE COLONY-STIMULATING FACTOR; (GM-CSF). MGI-1,Macrophage-Granulocyte Inducer,Colony Stimulating Factor,Colony-Stimulating Factor,MGI-1 Protein,Myeloid Cell-Growth Inducer,Protein Inducer MGI,Cell-Growth Inducer, Myeloid,Colony Stimulating Factors,Inducer, Macrophage-Granulocyte,Inducer, Myeloid Cell-Growth,MGI 1 Protein,MGI, Protein Inducer,Macrophage Granulocyte Inducer,Myeloid Cell Growth Inducer
D004357 Drug Synergism The action of a drug in promoting or enhancing the effectiveness of another drug. Drug Potentiation,Drug Augmentation,Augmentation, Drug,Augmentations, Drug,Drug Augmentations,Drug Potentiations,Drug Synergisms,Potentiation, Drug,Potentiations, Drug,Synergism, Drug,Synergisms, Drug
D006133 Growth Substances Signal molecules that are involved in the control of cell growth and differentiation. Mitogens, Endogenous,Endogenous Mitogens
D006410 Hematopoiesis The development and formation of various types of BLOOD CELLS. Hematopoiesis can take place in the BONE MARROW (medullary) or outside the bone marrow (HEMATOPOIESIS, EXTRAMEDULLARY). Hematopoiesis, Medullary,Haematopoiesis,Medullary Hematopoiesis
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man

Related Publications

C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
September 2000, Experimental hematology,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
September 2004, Di 1 jun yi da xue xue bao = Academic journal of the first medical college of PLA,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
November 1994, Blood,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
August 2005, Journal of gastroenterology,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
December 2004, International journal of hematology,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
April 1999, Experimental hematology,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
March 1995, Cellular immunology,
C Caux, and S Saeland, and C Favre, and V Duvert, and P Mannoni, and J Banchereau
September 1993, Stem cells (Dayton, Ohio),
Copied contents to your clipboard!