Topoisomerase II inhibition and high yield of endoreduplication induced by the flavonoids luteolin and quercetin. 2006

G Cantero, and C Campanella, and S Mateos, and F Cortés
Department of Cell Biology, Faculty of Biology, University of Seville Seville, Spain.

Luteolin and quercetin are widely distributed plant flavonoids that possess a variety of chemical and biological activities, including free-radical scavenging and antioxidant activity. Recently, both flavonoids have been reported to inhibit DNA topoisomerases I and II (topo I and topo II), a property that, together with their ability to induce DNA and chromosome damage, has made them candidate anticancer compounds. In the present study, we confirmed that both compounds are topo II inhibitors by conducting a comparative study of their effect on topo II activity from Chinese hamster ovary AA8 cells. Because interference with the function of topo II to resolve DNA entanglement at the end of replication results in chromosome malsegregation at mitosis, we investigated whether luteolin and quercetin are effective in inducing endoreduplication in AA8 cells. Concentrations of luteolin and quercetin that inhibited topo II catalytic activity resulted in extraordinarily high yields of metaphases showing diplochromosomes. Given the established relationship of polyploidy with tumor development via aneuploidy and genetic instability, these results question the usefulness of luteolin and quercetin in cancer therapy.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D011123 Polyploidy The chromosomal constitution of a cell containing multiples of the normal number of CHROMOSOMES; includes triploidy (symbol: 3N), tetraploidy (symbol: 4N), etc. Polyploid,Polyploid Cell,Cell, Polyploid,Cells, Polyploid,Polyploid Cells,Polyploidies,Polyploids
D011794 Quercetin A flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. 3,3',4',5,7-Pentahydroxyflavone,Dikvertin
D002478 Cells, Cultured Cells propagated in vitro in special media conducive to their growth. Cultured cells are used to study developmental, morphologic, metabolic, physiologic, and genetic processes, among others. Cultured Cells,Cell, Cultured,Cultured Cell
D002869 Chromosome Aberrations Abnormal number or structure of chromosomes. Chromosome aberrations may result in CHROMOSOME DISORDERS. Autosome Abnormalities,Cytogenetic Aberrations,Abnormalities, Autosome,Abnormalities, Chromosomal,Abnormalities, Chromosome,Chromosomal Aberrations,Chromosome Abnormalities,Cytogenetic Abnormalities,Aberration, Chromosomal,Aberration, Chromosome,Aberration, Cytogenetic,Aberrations, Chromosomal,Aberrations, Chromosome,Aberrations, Cytogenetic,Abnormalities, Cytogenetic,Abnormality, Autosome,Abnormality, Chromosomal,Abnormality, Chromosome,Abnormality, Cytogenetic,Autosome Abnormality,Chromosomal Aberration,Chromosomal Abnormalities,Chromosomal Abnormality,Chromosome Aberration,Chromosome Abnormality,Cytogenetic Aberration,Cytogenetic Abnormality
D004249 DNA Damage Injuries to DNA that introduce deviations from its normal, intact structure and which may, if left unrepaired, result in a MUTATION or a block of DNA REPLICATION. These deviations may be caused by physical or chemical agents and occur by natural or unnatural, introduced circumstances. They include the introduction of illegitimate bases during replication or by deamination or other modification of bases; the loss of a base from the DNA backbone leaving an abasic site; single-strand breaks; double strand breaks; and intrastrand (PYRIMIDINE DIMERS) or interstrand crosslinking. Damage can often be repaired (DNA REPAIR). If the damage is extensive, it can induce APOPTOSIS. DNA Injury,DNA Lesion,DNA Lesions,Genotoxic Stress,Stress, Genotoxic,Injury, DNA,DNA Injuries
D004250 DNA Topoisomerases, Type II DNA TOPOISOMERASES that catalyze ATP-dependent breakage of both strands of DNA, passage of the unbroken strands through the breaks, and rejoining of the broken strands. These enzymes bring about relaxation of the supercoiled DNA and resolution of a knotted circular DNA duplex. DNA Topoisomerase (ATP-Hydrolysing),DNA Topoisomerase II,DNA Topoisomerase II alpha,DNA Topoisomerase II beta,DNA Type 2 Topoisomerase,TOP2A Protein,TOP2B Protein,Topoisomerase II,Topoisomerase II alpha,Topoisomerase II beta,Type II DNA Topoisomerase,alpha, Topoisomerase II,beta, Topoisomerase II
D004791 Enzyme Inhibitors Compounds or agents that combine with an enzyme in such a manner as to prevent the normal substrate-enzyme combination and the catalytic reaction. Enzyme Inhibitor,Inhibitor, Enzyme,Inhibitors, Enzyme
D005419 Flavonoids A group of phenyl benzopyrans named for having structures like FLAVONES. 2-Phenyl-Benzopyran,2-Phenyl-Chromene,Bioflavonoid,Bioflavonoids,Flavonoid,2-Phenyl-Benzopyrans,2-Phenyl-Chromenes,2 Phenyl Benzopyran,2 Phenyl Benzopyrans,2 Phenyl Chromene,2 Phenyl Chromenes
D006224 Cricetinae A subfamily in the family MURIDAE, comprising the hamsters. Four of the more common genera are Cricetus, CRICETULUS; MESOCRICETUS; and PHODOPUS. Cricetus,Hamsters,Hamster

Related Publications

G Cantero, and C Campanella, and S Mateos, and F Cortés
April 2002, Mutation research,
G Cantero, and C Campanella, and S Mateos, and F Cortés
March 2003, Mutagenesis,
G Cantero, and C Campanella, and S Mateos, and F Cortés
July 2016, Journal of cardiovascular pharmacology,
G Cantero, and C Campanella, and S Mateos, and F Cortés
June 2014, Journal of agricultural and food chemistry,
G Cantero, and C Campanella, and S Mateos, and F Cortés
December 2017, The Journal of pharmacy and pharmacology,
G Cantero, and C Campanella, and S Mateos, and F Cortés
January 2015, Natural product research,
G Cantero, and C Campanella, and S Mateos, and F Cortés
January 2012, Analytical and bioanalytical chemistry,
G Cantero, and C Campanella, and S Mateos, and F Cortés
April 2009, Journal of natural products,
G Cantero, and C Campanella, and S Mateos, and F Cortés
July 1996, Mutation research,
G Cantero, and C Campanella, and S Mateos, and F Cortés
September 2017, Food & function,
Copied contents to your clipboard!