Ribosomal DNA in the grasshopper Podisma pedestris: escape from concerted evolution. 2006

Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
School of Biological and Chemical Sciences, Queen Mary, University of London, United Kingdom. irene.keller@vogelwarte.ch

Eukaryote nuclear ribosomal DNA (rDNA) typically exhibits strong concerted evolution: a pattern in which several hundred rDNA sequences within any one species show little or no genetic diversity, whereas the sequences of different species diverge. We report a markedly different pattern in the genome of the grasshopper Podisma pedestris. Single individuals contain several highly divergent ribosomal DNA groups. Analysis of the magnitude of divergence indicates that these groups have coexisted in the Podisma lineage for at least 11 million years. There are two putatively functional groups, each estimated to be at least 4 million years old, and several pseudogene groups, many of which are transcribed. Southern hybridization and real-time PCR experiments show that only one of the putatively functional types occurs at high copy number. However, this group is scarcely amplified under standard PCR conditions, which means that phylogenetic inference on the basis of standard PCR would be severely distorted. The analysis suggests that concerted evolution has been remarkably ineffective in P. pedestris. We propose that this outcome may be related to the species' exceptionally large genome and the associated low rate of deletion per base pair, which may allow pseudogenes to persist.

UI MeSH Term Description Entries
D010802 Phylogeny The relationships of groups of organisms as reflected by their genetic makeup. Community Phylogenetics,Molecular Phylogenetics,Phylogenetic Analyses,Phylogenetic Analysis,Phylogenetic Clustering,Phylogenetic Comparative Analysis,Phylogenetic Comparative Methods,Phylogenetic Distance,Phylogenetic Generalized Least Squares,Phylogenetic Groups,Phylogenetic Incongruence,Phylogenetic Inference,Phylogenetic Networks,Phylogenetic Reconstruction,Phylogenetic Relatedness,Phylogenetic Relationships,Phylogenetic Signal,Phylogenetic Structure,Phylogenetic Tree,Phylogenetic Trees,Phylogenomics,Analyse, Phylogenetic,Analysis, Phylogenetic,Analysis, Phylogenetic Comparative,Clustering, Phylogenetic,Community Phylogenetic,Comparative Analysis, Phylogenetic,Comparative Method, Phylogenetic,Distance, Phylogenetic,Group, Phylogenetic,Incongruence, Phylogenetic,Inference, Phylogenetic,Method, Phylogenetic Comparative,Molecular Phylogenetic,Network, Phylogenetic,Phylogenetic Analyse,Phylogenetic Clusterings,Phylogenetic Comparative Analyses,Phylogenetic Comparative Method,Phylogenetic Distances,Phylogenetic Group,Phylogenetic Incongruences,Phylogenetic Inferences,Phylogenetic Network,Phylogenetic Reconstructions,Phylogenetic Relatednesses,Phylogenetic Relationship,Phylogenetic Signals,Phylogenetic Structures,Phylogenetic, Community,Phylogenetic, Molecular,Phylogenies,Phylogenomic,Reconstruction, Phylogenetic,Relatedness, Phylogenetic,Relationship, Phylogenetic,Signal, Phylogenetic,Structure, Phylogenetic,Tree, Phylogenetic
D004275 DNA, Ribosomal DNA sequences encoding RIBOSOMAL RNA and the segments of DNA separating the individual ribosomal RNA genes, referred to as RIBOSOMAL SPACER DNA. Ribosomal DNA,rDNA
D005810 Multigene Family A set of genes descended by duplication and variation from some ancestral gene. Such genes may be clustered together on the same chromosome or dispersed on different chromosomes. Examples of multigene families include those that encode the hemoglobins, immunoglobulins, histocompatibility antigens, actins, tubulins, keratins, collagens, heat shock proteins, salivary glue proteins, chorion proteins, cuticle proteins, yolk proteins, and phaseolins, as well as histones, ribosomal RNA, and transfer RNA genes. The latter three are examples of reiterated genes, where hundreds of identical genes are present in a tandem array. (King & Stanfield, A Dictionary of Genetics, 4th ed) Gene Clusters,Genes, Reiterated,Cluster, Gene,Clusters, Gene,Families, Multigene,Family, Multigene,Gene Cluster,Gene, Reiterated,Multigene Families,Reiterated Gene,Reiterated Genes
D006110 Grasshoppers Plant-eating orthopterans having hindlegs adapted for jumping. There are two main families: Acrididae and Romaleidae. Some of the more common genera are: Melanoplus, the most common grasshopper; Conocephalus, the eastern meadow grasshopper; and Pterophylla, the true katydid. Acrididae,Locusts,Romaleidae,Grasshopper,Locust
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D014644 Genetic Variation Genotypic differences observed among individuals in a population. Genetic Diversity,Variation, Genetic,Diversity, Genetic,Diversities, Genetic,Genetic Diversities,Genetic Variations,Variations, Genetic
D017422 Sequence Analysis, DNA A multistage process that includes cloning, physical mapping, subcloning, determination of the DNA SEQUENCE, and information analysis. DNA Sequence Analysis,Sequence Determination, DNA,Analysis, DNA Sequence,DNA Sequence Determination,DNA Sequence Determinations,DNA Sequencing,Determination, DNA Sequence,Determinations, DNA Sequence,Sequence Determinations, DNA,Analyses, DNA Sequence,DNA Sequence Analyses,Sequence Analyses, DNA,Sequencing, DNA
D049750 Genome, Insect The genetic complement of an insect (INSECTS) as represented in its DNA. Insect Genome,Genomes, Insect,Insect Genomes
D019143 Evolution, Molecular The process of cumulative change at the level of DNA; RNA; and PROTEINS, over successive generations. Molecular Evolution,Genetic Evolution,Evolution, Genetic

Related Publications

Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
July 2009, Heredity,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
September 1981, Evolution; international journal of organic evolution,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
December 1975, Heredity,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 1970, Chromosoma,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 1972, Chromosoma,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 2007, Chromosome research : an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 2013, PloS one,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 1991, Science (New York, N.Y.),
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
December 2002, Genome,
Irene Keller, and Ioana C Chintauan-Marquier, and Paris Veltsos, and Richard A Nichols
January 2021, Annals of botany,
Copied contents to your clipboard!