Homocysteine thiolactone and human cholinesterases. 2007

Sultan Darvesh, and Ryan Walsh, and Earl Martin
Department of Medicine (Neurology and Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada. sultan.darvesh@dal.ca

1. The cholinergic system is important in cognition and behavior as well as in the function of the cerebral vasculature. 2. Hyperhomocysteinemia is a risk factor for development of both dementia and cerebrovascular disease. 3. Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) are serine hydrolase enzymes that catalyze the hydrolysis of the neurotransmitter acetylcholine, a key process in the regulation of the cholinergic system. 4. It has been hypothesized that the deleterious effects of elevated homocysteine may, in part, be due to its actions on cholinesterases. 5. To further test this hypothesis, homocysteine and a number of its metabolites and analogues were examined for effects on the activity of human cholinesterases. 6. Homocysteine itself did not have any measurable effect on the activity of these enzymes. 7. Homocysteine thiolactone, the cyclic metabolite of homocysteine, slowly and irreversibly inhibited the activity of human AChE. 8. Conversely, this metabolite and some of its analogues significantly enhanced the activity of human BuChE. 9. Structure-activity studies indicated that the unprotonated amino group of homocysteine thiolactone and related compounds represents the essential feature for activation of BuChE, whereas the thioester linkage appears to be responsible for the slow AChE inactivation. 10. It is concluded that hyperhomocysteinemia may exert its adverse effects, in part, through the metabolite of homocysteine, homocysteine thiolactone, which is capable of altering the activity of human cholinesterases, the most pronounced effect being BuChE activation.

UI MeSH Term Description Entries
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D002091 Butyrylcholinesterase An aspect of cholinesterase (EC 3.1.1.8). Pseudocholinesterase,Benzoylcholinesterase,Butyrylthiocholinesterase
D004789 Enzyme Activation Conversion of an inactive form of an enzyme to one possessing metabolic activity. It includes 1, activation by ions (activators); 2, activation by cofactors (coenzymes); and 3, conversion of an enzyme precursor (proenzyme or zymogen) to an active enzyme. Activation, Enzyme,Activations, Enzyme,Enzyme Activations
D006710 Homocysteine A thiol-containing amino acid formed by a demethylation of METHIONINE. 2-amino-4-mercaptobutyric acid,Homocysteine, L-Isomer,2 amino 4 mercaptobutyric acid,Homocysteine, L Isomer,L-Isomer Homocysteine
D006801 Humans Members of the species Homo sapiens. Homo sapiens,Man (Taxonomy),Human,Man, Modern,Modern Man
D000110 Acetylcholinesterase An enzyme that catalyzes the hydrolysis of ACETYLCHOLINE to CHOLINE and acetate. In the CNS, this enzyme plays a role in the function of peripheral neuromuscular junctions. EC 3.1.1.7. Acetylcholine Hydrolase,Acetylthiocholinesterase,Hydrolase, Acetylcholine
D013329 Structure-Activity Relationship The relationship between the chemical structure of a compound and its biological or pharmacological activity. Compounds are often classed together because they have structural characteristics in common including shape, size, stereochemical arrangement, and distribution of functional groups. Relationship, Structure-Activity,Relationships, Structure-Activity,Structure Activity Relationship,Structure-Activity Relationships

Related Publications

Sultan Darvesh, and Ryan Walsh, and Earl Martin
April 1982, Biochemical medicine,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
February 2005, Analytical biochemistry,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
June 1987, Research communications in chemical pathology and pharmacology,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
January 1988, Research communications in chemical pathology and pharmacology,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
July 2021, Journal of internal medicine,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
November 1966, Analytical biochemistry,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
January 1994, Annals of clinical and laboratory science,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
February 1989, Research communications in chemical pathology and pharmacology,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
January 2006, Postepy biochemii,
Sultan Darvesh, and Ryan Walsh, and Earl Martin
July 2021, Journal of internal medicine,
Copied contents to your clipboard!