Homophilic binding of mouse monoclonal antibodies against GD3 ganglioside. 1990

P B Chapman, and H Yuasa, and A N Houghton
Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY 10021.

R24, a mouse IgG3 mAb against GD3 ganglioside, was shown to bind to itself in a homophilic manner. This was demonstrated by augmented binding of 125I-labeled R24 to the cell surface of GD3+ cells by unlabeled R24 and by direct binding of biotinylated R24 to R24 adsorbed on solid phase. Although homophilic binding was evident when R24 was bound to solid phase, R24-R24 aggregates could not be detected in solution under otherwise identical conditions. R24 bound to four other mAb (two IgG3, one IgG2a, one IgM) directed against GD3 but did not bind to a panel of 21 other mAb including other IgG3 mAb and mAb directed against non-GD3 ganglioside. Evidence implicating the GD3-binding site of R24 in homophilic binding included the following observations: 1) F(ab')2 fragments of R24 could bind to R24, 2) an antiidiotypic mAb against the GD3-binding site of R24 inhibited R24 homophilic binding, 3) an IgM anti-GD3 mAb also demonstrated homophilic binding to R24, and 4) homophilic binding was a function of immunoreactivity and avidity for GD3. R24 variants with 40-fold lower avidity for GD3 demonstrated a similar decrease in homophilic binding. Inasmuch as R24 bound to R24 F(ab')2 fragments and specifically to anti-GD3 mAb, it appeared that the target for homophilic binding was an epitope within the V region of anti-GD3 mAb. It is likely that homophilic interactions result in increased affinity of R24 for GD3 through increased effective valency of antibody-Ag complexes.

UI MeSH Term Description Entries
D007074 Immunoglobulin G The major immunoglobulin isotype class in normal human serum. There are several isotype subclasses of IgG, for example, IgG1, IgG2A, and IgG2B. Gamma Globulin, 7S,IgG,IgG Antibody,Allerglobuline,IgG(T),IgG1,IgG2,IgG2A,IgG2B,IgG3,IgG4,Immunoglobulin GT,Polyglobin,7S Gamma Globulin,Antibody, IgG,GT, Immunoglobulin
D007140 Immunoglobulin Fab Fragments Univalent antigen-binding fragments composed of one entire IMMUNOGLOBULIN LIGHT CHAIN and the amino terminal end of one of the IMMUNOGLOBULIN HEAVY CHAINS from the hinge region, linked to each other by disulfide bonds. Fab contains the IMMUNOGLOBULIN VARIABLE REGIONS, which are part of the antigen-binding site, and the first IMMUNOGLOBULIN CONSTANT REGIONS. This fragment can be obtained by digestion of immunoglobulins with the proteolytic enzyme PAPAIN. Fab Fragment,Fab Fragments,Ig Fab Fragments,Immunoglobulins, Fab Fragment,Fab Immunoglobulin Fragments,Immunoglobulin Fab Fragment,Immunoglobulins, Fab,Fab Fragment Immunoglobulins,Fab Fragment, Immunoglobulin,Fab Fragments, Immunoglobulin,Fragment Immunoglobulins, Fab,Fragment, Fab,Immunoglobulin Fragments, Fab
D008815 Mice, Inbred Strains Genetically identical individuals developed from brother and sister matings which have been carried out for twenty or more generations, or by parent x offspring matings carried out with certain restrictions. All animals within an inbred strain trace back to a common ancestor in the twentieth generation. Inbred Mouse Strains,Inbred Strain of Mice,Inbred Strain of Mouse,Inbred Strains of Mice,Mouse, Inbred Strain,Inbred Mouse Strain,Mouse Inbred Strain,Mouse Inbred Strains,Mouse Strain, Inbred,Mouse Strains, Inbred,Strain, Inbred Mouse,Strains, Inbred Mouse
D008954 Models, Biological Theoretical representations that simulate the behavior or activity of biological processes or diseases. For disease models in living animals, DISEASE MODELS, ANIMAL is available. Biological models include the use of mathematical equations, computers, and other electronic equipment. Biological Model,Biological Models,Model, Biological,Models, Biologic,Biologic Model,Biologic Models,Model, Biologic
D005732 Gangliosides A subclass of ACIDIC GLYCOSPHINGOLIPIDS. They contain one or more sialic acid (N-ACETYLNEURAMINIC ACID) residues. Using the Svennerholm system of abbrevations, gangliosides are designated G for ganglioside, plus subscript M, D, or T for mono-, di-, or trisialo, respectively, the subscript letter being followed by a subscript arabic numeral to indicated sequence of migration in thin-layer chromatograms. (From Oxford Dictionary of Biochemistry and Molecular Biology, 1997) Ganglioside,Sialoglycosphingolipids
D000818 Animals Unicellular or multicellular, heterotrophic organisms, that have sensation and the power of voluntary movement. Under the older five kingdom paradigm, Animalia was one of the kingdoms. Under the modern three domain model, Animalia represents one of the many groups in the domain EUKARYOTA. Animal,Metazoa,Animalia
D000911 Antibodies, Monoclonal Antibodies produced by a single clone of cells. Monoclonal Antibodies,Monoclonal Antibody,Antibody, Monoclonal
D000918 Antibody Specificity The property of antibodies which enables them to react with some ANTIGENIC DETERMINANTS and not with others. Specificity is dependent on chemical composition, physical forces, and molecular structure at the binding site. Antibody Specificities,Specificities, Antibody,Specificity, Antibody
D000939 Epitopes Sites on an antigen that interact with specific antibodies. Antigenic Determinant,Antigenic Determinants,Antigenic Specificity,Epitope,Determinant, Antigenic,Determinants, Antigenic,Specificity, Antigenic
D001665 Binding Sites The parts of a macromolecule that directly participate in its specific combination with another molecule. Combining Site,Binding Site,Combining Sites,Site, Binding,Site, Combining,Sites, Binding,Sites, Combining

Related Publications

P B Chapman, and H Yuasa, and A N Houghton
January 1989, Progress in clinical and biological research,
P B Chapman, and H Yuasa, and A N Houghton
December 1991, Journal of biochemistry,
P B Chapman, and H Yuasa, and A N Houghton
September 1993, Vaccine,
P B Chapman, and H Yuasa, and A N Houghton
July 1991, The Journal of clinical investigation,
P B Chapman, and H Yuasa, and A N Houghton
December 1986, Cancer research,
P B Chapman, and H Yuasa, and A N Houghton
June 2003, Current opinion in investigational drugs (London, England : 2000),
P B Chapman, and H Yuasa, and A N Houghton
December 1989, The American Journal of dermatopathology,
P B Chapman, and H Yuasa, and A N Houghton
August 1997, Melanoma research,
P B Chapman, and H Yuasa, and A N Houghton
April 1987, Journal of steroid biochemistry,
Copied contents to your clipboard!